摘要:
In one embodiment, the present invention includes an apparatus having an estimation logic to estimate a dynamic capacitance of a processor circuit of a processor during a plurality of processor cycles, a power gate calculator to calculate a control value for a power gate circuit coupled to a load line and between a voltage regulator and the processor circuit based on the dynamic capacitance estimate, and a controller to control an impedance of the power gate circuit based on the control value. Other embodiments are described and claimed.
摘要:
In one embodiment, the present invention includes an apparatus having an estimation logic to estimate a dynamic capacitance of a processor circuit of a processor during a plurality of processor cycles, a power gate calculator to calculate a control value for a power gate circuit coupled to a load line and between a voltage regulator and the processor circuit based on the dynamic capacitance estimate, and a controller to control an impedance of the power gate circuit based on the control value. Other embodiments are described and claimed.
摘要:
Methods and systems to adjust a resistance between a supply grid and a power-gated grid during an active state of a power-gated circuitry in response to load changes in the circuitry to maintain a relatively consistent IR droop. Subsets of power gates (PGs) may be selectively enabled and disabled based on changes in a load factor, such as a voltage, which may be monitored at a gated power distribution grid and/or proximate to a transistor gate within the power-gated circuitry. The adjusting may be performed to minimize a difference between the monitored voltage and a reference, such as with successive approximation or CMS software. PG subsets may be distributed within one or more layers of an integrated circuit (IC) die and may be selectively enabled/disabled based on location. PGs may be embedded within lower layers of an integrated circuit (IC) die, such as within metal layers of the IC die.
摘要:
Methods and systems to adjust a resistance between a supply grid and a power-gated grid during an active state of a power-gated circuitry in response to load changes in the circuitry to maintain a relatively consistent IR droop. Subsets of power gates (PGs) may be selectively enabled and disabled based on changes in a load factor, such as a voltage, which may be monitored at a gated power distribution grid and/or proximate to a transistor gate within the power-gated circuitry. The adjusting may be performed to minimize a difference between the monitored voltage and a reference, such as with successive approximation or CMS software. PG subsets may be distributed within one or more layers of an integrated circuit (IC) die and may be selectively enabled/disabled based on location. PGs may be embedded within lower layers of an integrated circuit (IC) die, such as within metal layers of the IC die.
摘要:
A power-gate circuit includes a power-gate transistor operable to switch to decouple a first supply voltage from a second supply voltage during an idle mode, and to couple the first supply voltage to the second supply voltage during a full operational mode. Part of the charge stored at a gate terminal of the power-gate transistor, would have been otherwise flushed to ground while turning on the power-gate transistor, is routed to the rail of the second supply voltage of the logic block. Part of the charge on the rail of the second supply voltage is used to charge the gate terminal of the power-gate transistor to de-activate the power-gate transistor if the logic block goes to the idle mode. Energy is saved both ways because of the charge recycling and the ability to use the power gate circuit even in cases where the duration of the idle mode may be short.
摘要:
A power-gate circuit includes a power-gate transistor operable to switch to decouple a first supply voltage from a second supply voltage during an idle mode, and to couple the first supply voltage to the second supply voltage during a full operational mode. Part of the charge stored at a gate terminal of the power-gate transistor, would have been otherwise flushed to ground while turning on the power-gate transistor, is routed to the rail of the second supply voltage of the logic block. Part of the charge on the rail of the second supply voltage is used to charge the gate terminal of the power-gate transistor to deactivate the power-gate transistor if the logic block goes to the idle mode. Energy is saved both ways because of the charge recycling and the ability to use the power gate circuit even in cases where the duration of the idle mode may be short.
摘要:
A device for stimulating living tissue or nerves by individual or repeated stimulating pulses via stimulating electrodes which stimulate living tissue or nerves by stimulating pulses includes an electrical circuit which regulates the electric voltage or charge on the stimulating electrodes as a function of the electric voltage between the stimulating electrodes and reduces or equalises imbalances of electric charges on the stimulating electrodes. This device is capable of equalizing the electric charge on the stimulating electrodes of a stimulation system. The device and the process for using the device have the advantage that imbalances of electric charges on the stimulating electrodes, and the associated disadvantageous effects on the tissue and on the nerves, are avoided or eliminated. Furthermore, the device has a small space requirement.