Abstract:
A fluid treatment apparatus includes a base portion, a medium or media, and an elongated support portion. The base portion has a first end, a second end, and a side with an exterior surface. The first end has an inlet and outlet for receiving and dispensing a water flow, respectively. The medium or media is spaced within the base portion and receives fluid through the inlet, treats the fluid, and dispenses the fluid through the outlet. The elongated support portion extends from the second end of the base portion and has a sidewall. The sidewall has an exterior facing surface that is substantially aligned with the exterior surface of the side. The elongated support portion maintains a latch assembly location for engaging a filter head assembly and is configured to withstand torsional forces applied by the user for engagement and alignment with an elongated receiving cavity of an appliance.
Abstract:
A customizable multi-stage fluid treatment assembly typically includes a connector, a plurality of cartridges, and a cap. The plurality of cartridges have a treatment medium spaced within an interior volume of the individual cartridges, between the ends thereof. The ends of the plurality of cartridges are configured to receive a fluid, bring the fluid into operative contact with the treatment medium, and dispense the fluid from the opposing end of the cartridge. The connector is coupled with one end of the plurality of cartridges and has an inlet and an outlet for receiving and dispensing the fluid to and from an appliance. The cap is coupled with the other end of the plurality of cartridges, enclosing the fluid treatment assembly, which is configured to be received in a cavity of an appliance. The cartridges of the plurality of cartridges may be individually replaced with cartridges to meet customized needs.
Abstract:
A liquid (water) pitcher that includes a pitcher having a liquid receiving aperture configured to allow a liquid (water) to be delivered into an interior liquid storage volume defined by at least one upwardly extending wall extending upward from a base and a liquid (water) filter positioned within the pitcher that includes a filter housing and at least one gravity-driven fluid treatment medium within the filter housing where the filter housing has a plurality of fluid intake apertures and at least one treated fluid outlet configured to deliver treated fluid into an internal volume of a vessel wherein the at least one fluid filtering medium treats the liquid at a rate of at least about one liter per minute while removing at least chlorine odor and chlorine taste components from the liquid (water).
Abstract:
A customizable multi-stage fluid treatment assembly typically includes a connector, a plurality of cartridges, and a cap. The plurality of cartridges have a treatment medium spaced within an interior volume of the individual cartridges, between the ends thereof. The ends of the plurality of cartridges are configured to receive a fluid, bring the fluid into operative contact with the treatment medium, and dispense the fluid from the opposing end of the cartridge. The connector is coupled with one end of the plurality of cartridges and has an inlet and an outlet for receiving and dispensing the fluid to and from an appliance. The cap is coupled with the other end of the plurality of cartridges, enclosing the fluid treatment assembly, which is configured to be received in a cavity of an appliance. The cartridges of the plurality of cartridges may be individually replaced with cartridges to meet customized needs.
Abstract:
An outdoor unit (ODU) for an air conditioning system includes a baffle or other airflow direction control such that the cooling air from a condenser is at least partially directed over the compressor to provide air movement around the compressor to assist in thermal transfer of heat from the compressor. In one system, curvilinear frustoconical baffles are positioned in a conventional barrel-type outdoor unit to direct airflow toward the compressor before being discharged from the unit. When any of the ODUs is part of a heat pump system for providing heating and cooling, a retractable or movable air diverting system is employed when in the heating mode to prevent airflow through the condenser from reaching the compressor.
Abstract:
An ice piece release system that includes a chilled compartment set at a temperature below 0° C., a warm section at a temperature above 0° C., and a tray in thermal communication with the chilled compartment. The tray includes a plurality of ice piece-forming receptacles and a cavity in thermal communication with the receptacles. The ice piece release system also includes a primary reservoir assembly in thermal communication with the warm section and fluid communication with the cavity of the tray. The ice piece release system further includes a heat-exchanging fluid having a freezing point below that of water, and the fluid resides in the primary reservoir assembly and the cavity of the tray. The primary reservoir assembly is further adapted to move at least a portion of the heat-exchanging fluid in the reservoir assembly into the cavity.
Abstract:
An appliance that includes a cabinet having an exterior surface; a refrigeration compartment located within the cabinet; and a hydrophilic structure disposed on the exterior surface. The hydrophilic structure is configured to spread condensation. The appliance further includes a wicking structure located in proximity to the hydrophilic structure, and the wicking structure is configured to receive the condensation.
Abstract:
An ice piece release and formation system (and associated methods) including a chilled compartment, a warm section, a tray in thermal communication with the chilled compartment, and a reservoir assembly in thermal communication with the warm section. The tray includes ice piece-forming receptacles and a cavity in thermal communication with the receptacles. The reservoir assembly includes chambers in fluid communication with the cavity and a driving body for moving the chambers. The system further includes a heat-exchanging fluid that resides in the chambers and the cavity of the tray. The driving body and the reservoir assembly are further adapted to move each of the chambers to a position above the cavity, and the other of the chambers to a position below the cavity, such that the fluid within the chamber positioned above the cavity flows into the cavity.
Abstract:
A customizable multi-stage fluid treatment assembly typically includes a connector, a plurality of cartridges, and a cap. The plurality of cartridges have a treatment medium spaced within an interior volume of the individual cartridges, between the ends thereof. The ends of the plurality of cartridges are configured to receive a fluid, bring the fluid into operative contact with the treatment medium, and dispense the fluid from the opposing end of the cartridge. The connector is coupled with one end of the plurality of cartridges and has an inlet and an outlet for receiving and dispensing the fluid to and from an appliance. The cap is coupled with the other end of the plurality of cartridges, enclosing the fluid treatment assembly, which is configured to be received in a cavity of an appliance. The cartridges of the plurality of cartridges may be individually replaced with cartridges to meet customized needs.
Abstract:
A gravity driven water filter having: a housing with at least one upwardly extending sidewall that extend upwardly from a bottom of the housing and define an interior volume of the housing; a filter media retention screen covering treated water outlets on a bottom of the housing; and a lid closing a top of the housing and enclosing the interior volume of the housing where the lid includes a plurality of water inlet holes, an upwardly extending vent stack, and finger actuated tabular members radially extending from the vent stack and engaged with the vent stack and a top surface of the lid to permit a rotational force to be applied to the housing.