摘要:
A method for operating an exhaust-gas cleaning system having an NOx adsorption accumulator and an SOx trap, includes, in normal operating phases, feeding the exhaust gas to be cleaned first via the SOx trap and then via the NOx adsorption accumulator. The normal operating phases are from time to time interrupted by desulphurization phases for desulphurizing the SOx trap. Means are provided for controlling the direction of flow of the exhaust stream so that it optionally passes firstly via the SOx trap and then via the NOx adsorption accumulator, or firstly via the NOx adsorption accumulator and then via the SOx trap, so that during the desulphurization phases the exhaust gas can be passed firstly via the NOx adsorption accumulator and then via the SOx trap.
摘要:
An internal combustion engine includes an exhaust-gas aftertreatment device, and an operating method is for operating the internal combustion engine. The internal combustion engine is operable with a lean mixture and a rich mixture, the internal combustion engine having an exhaust-gas aftertreatment device, which includes a nitrogen oxide storage catalytic converter and a particle filter. When lean exhaust gas flows through the nitrogen oxide storage catalytic converter, it removes nitrogen oxides from the exhaust gas by storing them, and, when reducing exhaust gas flows through the nitrogen oxide storage catalytic converter, it produces ammonia through reduction of stored and/or supplied nitrogen oxides and releases it to the exhaust gas. Downstream from the nitrogen oxide storage catalytic converter, the exhaust-gas aftertreatment device includes a SCR catalytic converter, which reduces nitrogen oxides contained in the exhaust gas, using ammonia produced by the nitrogen oxide storage catalytic converter.
摘要:
An exhaust-gas aftertreatment device with a nitrogen oxide storage catalytic converter for an internal combustion engine, and a method for operating an exhaust-gas aftertreatment device which is assigned to an internal combustion engine and has a nitrogen oxide storage catalytic converter. An SCR catalytic converter is arranged in the exhaust-gas aftertreatment device, it being possible for the exhaust gas which emerges from the nitrogen oxide storage catalytic converter to be fed to the SCR catalytic converter when the internal combustion engine is in a desulphating operating mode with a reducing exhaust-gas composition, in order for H2S which is formed during the desulphating to be removed. When the internal combustion engine is in a desulphating operating mode, the following steps are performed: establishing a reducing exhaust gas composition upstream of the nitrogen oxide storage catalytic converter; releasing the sulphur which is bound in the nitrogen oxide storage catalytic converter, to form hydrogen sulphide (H2S); feeding the hydrogen sulphide to an SCR catalytic converter which is arranged downstream of the nitrogen oxide storage catalytic converter in the exhaust-gas aftertreatment device; and reacting the hydrogen sulphide in the SCR catalytic converter to form sulphur dioxide under reducing exhaust-gas conditions. The method may be used in motor vehicles, e.g., passenger cars, with lean-burn internal combustion engines.
摘要:
In a method for the periodic desulphurization of a nitrogen-oxide or sulphur-oxide accumulator of an exhaust-gas cleaning system of an internal-combustion engine, during respective desulphurization periods, the accumulator is fed secondary air by secondary-air supply means, and is fed an engine exhaust gas which contains a reducing agent by setting a rich engine air ratio. At least during part of the desulphurization period, after a predeterminable desulphurization temperature has been reached, the accumulator air ratio is set, by suitably alternating the secondary air quantity supplied and/or the engine air ratio, between an oxidizing or stoichiometric atmosphere, and a reducing atmosphere.
摘要:
An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.
摘要:
An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.
摘要:
An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.
摘要:
An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.
摘要:
An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.
摘要:
An exhaust gas aftertreatment installment and associated exchaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.