摘要:
A method of fabricating a DRAM capacitor includes the step of forming an insulated layer and an etching stop layer successively on a substrate having a device structure. A contact window is formed within the etching stop layer and the insulated layer. A conductive layer is formed on the etching layer to fill in the contact window and patterned to serve as a lower electrode of the capacitor. A highly doped dielectric layer is then formed on the lower electrode and a thermal process is performed to diffuse the dopants inside the highly doped dielectric layer into the surface of the lower electrode. The dielectric layer is removed. A capacitor dielectric layer and an upper electrode are successively formed on the lower electrode to complete the fabrication of the capacitor.
摘要:
The present invention relates to a method of forming a contact hole of a DRAM on the semiconductor wafer. The semiconductor wafer comprises a substrate, a first dielectric layer, two bit lines on the first dielectric layer, a second dielectric layer, and a photo-resist layer comprising an opening to define the pattern of the contact hole. The method comprises performing a first anisotropic etching process to vertically remove a portion of the two dielectric layers and two bit lines to grossly form the contact hole, removing the photo-resist layer in its entirety, performing a thermal oxidation to form a silicon oxide layer on the side walls of the two bit lines, then forming a silicon nitride layer on the surface of the contact hole, and performing a dry etching to remove the silicon nitride layer. There is a silicon oxide layer and a silicon nitride layer between the bit line and the contact hole, and the contact area of the contact hole will not be reduced.
摘要:
An improved method of fabricating a node capacitor for a dynamic random access memory (DRAM) process is disclosed. The process includes depositing a first interpoly dielectric (IPD1) layer over a substrate, patterning a first photoresist layer on the first interpoly dielectric layer, thereby defining a trench. A trench is etched in the first interpoly dielectric layer using the first photoresist layer as a mask. A first polysilicon layer is deposited on the first interpoly dielectric layer. The first polysilicon layer is etched to expose the first interpoly dielectric layer, then forming a landing pad over the substrate. In order to a polycide layer and a second interpoly dielectric (IPD2) layer are deposited, patterning a second photoresist layer, thereby defining a bit line structure. A bit line structure is formed, then depositing a spacer on the bit line structure. A second polysilicon layer is deposited, patterning a third photoresist layer, thereby defining a bottom electrode. A bottom electrode is formed, then depositing a thin NO (silicon nitride-silicon oxide) dielectric layer on the bottom electrode. An addition step is performed before forming the thin NO dielectric layer on the bottom electrode. In this additional step, a hemispherical grain (HSG) polysilicon layer is formed on the second polysilicon layer. This advantage is used to the hemispherical grain polysilicon layer increasing the area of a node capacitor. A third polysilicon layer is deposited completely covering the thin NO dielectric layer to form a top electrode.
摘要:
A method of fabricating a dynamic random access memory includes forming a dummy layer over the isolation layer, in which the dummy layer has a higher etching selectivity than oxide. A dielectric layer is applied to isolate the bit lines. Then, a passivation layer is formed over the entire structure and a node contact opening is formed thereon. A liner oxide layer is then formed in the node contact opening to isolate the bit lines and the electrode of the capacitor. The node contact opening has a larger misalignment tolerance.
摘要:
A method of fabricating a self-aligned contact window includes forming an undoped dielectric layer on a substrate having a least gate structure. The dopants are implanted into a pre-determined region of the undoped dielectric layer and the dielectric layer with the dopants is then removed. A self-aligned contact is therefore completed.
摘要:
A method of fabricating a bottom electrode is described. A substrate having a conductive layer therein is provided. A first dielectric layer is formed over the substrate. A conductive plug is formed through the first dielectric layer to electrically couple with the conductive layer. A cap layer is formed over the substrate to cover the conductive plug. An isolation layer is formed over the cap layer. A plurality of bit lines is formed over the isolation layer. A second dielectric layer is formed over the isolation layer. A node contact opening is formed through the second dielectric layer, the bit lines and the isolation layer to expose the cap layer. A conformal isolation layer is formed over the substrate to partially fill the contact node opening. A third dielectric layer having an opening is formed over the substrate. The opening is aligned with the node contact opening. An etching step is performed to remove a portion of the conformal isolation layer exposed by the opening and the cap layer. An isolation spacer remaining from the conformal isolation layer is formed on a sidewall of the contact node opening. A conformal conductive layer is formed in the opening and the node contact opening to make contact with the conductive plug. The third dielectric layer is removed.
摘要:
A method of manufacturing a bottom electrode of a capacitor. A first dielectric layer is formed on a substrate. A cap layer is formed on the first dielectric layer. A second dielectric layer is formed on the cap layer. A node contact hole is formed to penetrate through the second dielectric layer, the cap layer and the first dielectric layer. A liner layer is formed on a sidewall of the node contact hole. A restraining layer is formed on the second dielectric layer. A patterned conductive layer is formed on a portion of the restraining layer and fills the node contact hole. A selective hemispherical grained layer is formed on the patterned conductive layer.
摘要:
A method for forming a different width of gate spacer is disclosed. The method includes firstly forming a gate oxide layer on a semiconductor substrate. A polysilicon layer, a conductive layer, a first dielectric layer are formed in order on the gate oxide layer. The first dielectric layer, the conductive layer, the polysilicon layer, and the gate oxide layer are further etched using them as the interior gate and the peripheral gate. Next, second dielectric layer, third dielectric layer, and fourth dielectric layer are formed over the interior gate and the peripheral gate, and a first photoresist layer abuts the surface of the fourth dielectric layer of the interior circuit. Moreover, etching the fourth dielectric layer of peripheral gate to form a second spacer of peripheral gate, and etching the third dielectric layer of the peripheral gate are undertaken to form a first spacer of the peripheral gate. Removing the first photoresist layer and the fourth dielectric layer of the interior circuit, a fifth dielectric layer is formed on the third dielectric layer of the interior circuit. The fourth dielectric layer and the top surface of the second dielectric layer of the peripheral circuit are removed. The fifth dielectric layer is formed on the first dielectric layer and the third peripheral of the peripheral circuit, and then the second photoresist layer on the fifth dielectric layer, wherein the third photoresist layer is patterned as a bit-line contact via of the interior circuit and the bit-line contact vias of the peripheral circuit. Finally, anisotropically etching the third photoresist layer and the fifth dielectric layer, a bit-line to the substrate contact via and a bit-line to the gate contact via are formed inside the fifth dielectric layer.
摘要:
A method for forming a hemispherical silicon grain (HSG) layer on a polysilicon electrode is provided. The method is suitable for a substrate, which has a dielectric layer over the substrate with an opening to expose the substrate, and a polysilicon layer is formed over the substrate. A portion of the polysilicon layer is removed above dielectric layer other than the opening region. Each sidewall of the polysilicon layer is slanted so that a trapezoidal polysilicon base is formed. A buffer layer is formed over the trapezoidal polysilicon base. An ion implantation process is performed to form an amorphous silicon layer with sufficient depth on a top surface region of the trapezoidal polysilicon base. The buffer layer includes silicon oxide or silicon nitride. During ion implantation, oxygen or nitrogen elements can also be bombarded into the amorphous silicon layer so as to buffer the amorphous silicon layer to be re-crystallized. A selective HSG layer is formed on the trapezoidal polysilicon electrode base.
摘要:
An output voltage detecting circuit includes a conducting structure, a voltage regulator, a first resistor and a second resistor. The conducting structure includes a power output return terminal, a first contact and a second contact. A compensating voltage is generated between the first and second contacts when an output current flows through the first and second contacts. The voltage regulator adjusts a first current according to a voltage across a first circuit terminal and the ground terminal of the voltage regulator, thereby generating a detecting signal according to the first current. An output voltage across the positive power output terminal and the power output return terminal is subject to voltage division by the first and second resistors to generate a divided voltage. The voltage across the first circuit terminal and the ground terminal of the voltage regulator is equal to a difference between the divided voltage and the compensating voltage.