摘要:
An electric machine having multi-set rectangular copper hairpin windings comprises a stator having a plurality of partially closed stator slots. A first winding set and a second winding set are positioned in the stator slots. The first winding set and the second winding set are connected by adjacent leg ends. According to a first embodiment, conductor layers in alternate slots alternate between different phases. The conductor layers in the remaining slots are all of the same phase. Hairpins having unequal length legs are used to implement the first embodiment. According to a second embodiment, conductor layers in alternate slots include one phase for the first winding set and another phase for the second winding set. The conductor layers in the remaining slots are all of the same phase. Hairpins having equal length legs are used to implement the second embodiment.
摘要:
An electric machine is disclosed herein comprising a stator and a rotor opposing the stator. A plurality of slots are formed in the rotor, each of the plurality of slots including a stator side and an opposing side. Each of the plurality of slots further include a central magnet retaining portion positioned between two opposing end portions of the slot. The central magnet retaining portion is defined by at least one protrusion formed on the stator side of the slot. The at least one protrusion forms a neck in the slot and separates the magnet retaining portion from one of the end portions. A magnet is positioned in the magnet retaining portion of the slot. The two opposing end portions of the slot are empty, providing voids at the ends of the slot.
摘要:
An electric machine having multi-set rectangular copper hairpin windings comprises a stator having a plurality of partially closed stator slots. A first winding set and a second winding set are positioned in the stator slots. The first winding set and the second winding set are connected by adjacent leg ends. According to a first embodiment, conductor layers in alternate slots alternate between different phases. The conductor layers in the remaining slots are all of the same phase. Hairpins having unequal length legs are used to implement the first embodiment. According to a second embodiment, conductor layers in alternate slots include one phase for the first winding set and another phase for the second winding set. The conductor layers in the remaining slots are all of the same phase. Hairpins having equal length legs are used to implement the second embodiment.
摘要:
An electric machine having multi-set rectangular copper hairpin windings comprises a stator having a plurality of partially closed stator slots. A first winding set and a second winding set are positioned in the stator slots. The first winding set and the second winding set are connected by adjacent leg ends. According to a first embodiment, conductor layers in alternate slots alternate between different phases. The conductor layers in the remaining slots are all of the same phase. Hairpins having unequal length legs are used to implement the first embodiment. According to a second embodiment, conductor layers in alternate slots include one phase for the first winding set and another phase for the second winding set. The conductor layers in the remaining slots are all of the same phase. Hairpins having equal length legs are used to implement the second embodiment.
摘要:
A method for controlling voltages in an integrated starter alternator electric machine is provided where the armature windings are manipulated in a Δ/Y/Δ fashion. In particular, the armature windings are arranged in a Δ connection during engine cranking operation, when the electric machine acts as a starter motor. After the engine is cranked, the windings are changed into a Y connection when the ISAD machine changes from motoring to generating and operates a low speeds, such as idle speed. Next, when the engine speed increases above a predetermined winding reconfiguration speed, the windings are switched from Y to Δ connection. If the engine speed falls below the winding reconfiguration speed, the machine again switches the armature windings to a Y connection to take advantage of the efficiencies of the Y connection at that low speed range in the generating state.
摘要翻译:提供了一种用于控制集成起动机交流发电机中的电压的方法,其中电枢绕组以Delta / Y / Delta方式被操纵。 特别地,当电机用作起动马达时,电枢绕组在发动机起动运转期间以三角形连接布置。 在发动机起动之后,当ISAD机器从电动转换到发电时,绕组变为Y形连接,并且操作诸如怠速的低速度。 接下来,当发动机转速增加到高于预定的绕线重新配置速度时,绕组从Y切换到Delta连接。 如果发动机转速低于绕组重新配置速度,则机器再次将电枢绕组切换到Y连接,以便在发电状态下在该低速范围内实现Y连接的效率。
摘要:
An electric machine is disclosed herein comprising a stator and a rotor opposing the stator. A plurality of slots are formed in the rotor, each of the plurality of slots including a stator side and an opposing side. Each of the plurality of slots further include a central magnet retaining portion positioned between two opposing end portions of the slot. The central magnet retaining portion is defined by at least one protrusion formed on the stator side of the slot. The at least one protrusion forms a neck in the slot and separates the magnet retaining portion from one of the end portions. A magnet is positioned in the magnet retaining portion of the slot. The two opposing end portions of the slot are empty, providing voids at the ends of the slot.
摘要:
A device may be configured to identify a plurality of images that are similar to a query image; generate a plurality of sets of rankings of the identified images based on a plurality of image attributes; compare the generated plurality of sets of rankings of the identified images to a reference set of rankings of images; select, based on the comparing, a particular set of rankings; and rank a plurality of images that are associated with another query image, based on an attribute associated with the selected particular set of rankings.
摘要:
A supercapacitor desalination cell comprises a first electrode, a second electrode, a spacer disposed between the first and second electrodes, and a monovalent ion selective layer disposed on at least one of the first and second electrodes. A supercapacitor desalination device and a method for desalination of a liquid are further presented.
摘要:
An apparatus for testing number of turns, used for testing the number of turns of a winding coil on an electrical machine stator with concentrated winding, comprising: a base (6); a rod-shaped rotor bracket (4) around one end of which an excitation coil (1) is wound and around the other end of which a standard coil (2) is wound; a joining member for joining the base (6) with the rotor bracket (4) so that the base (6) and the rotor bracket (4) can rotate relative to each other, wherein the plane of the base (6) is parallel to the rotor bracket (4); a fixing member for fixing the electrical machine stator (5) with concentrated winding to the base (6) so as to make the stator (5) concentric and coplanar with the rotor bracket (4); a galvanometer (17) connected to the standard coil (2), which is connected to the tested coil (3) of the stator (5) in reverse polarity to form a loop during testing. Also provided is a method for using the apparatus to test the number of turns. The apparatus for testing number of turns has a simple structure, is of great utility and can test the number of turns of a winding coil on an electrical machine stator with concentrated winding directly.
摘要:
An electrochemical device comprises an electrochemical cell. The electrochemical cell comprises a composite cation-exchange member including a conductive base and a cation-exchange material in physical contact with the conductive base, a composite anion-exchange member including a conductive base and an anion-exchange material in physical contact with the conductive base; and a compartment between the composite cation-exchange and anion-exchange members. The compartment comprises an inlet for introducing a feed stream, and an outlet for exiting of an output stream out of the compartment. The electrochemical device comprises a control device configured to transmit an electrical current to the composite cation-exchange and anion-exchange members at a regeneration stage in a manner that the conductive base on the composite cation-exchange member loses electrons and the conductive base on the composite anion-exchange member gains electrons.