摘要:
A method of etching a substrate is provided. The method of etching a substrate includes transferring a pattern into the substrate using a double patterned amorphous carbon layer on the substrate as a hardmask. Optionally, a non-carbon based layer is deposited on the amorphous carbon layer as a capping layer before the pattern is transferred into the substrate.
摘要:
A method of etching a substrate is provided. The method of etching a substrate includes transferring a pattern into the substrate using a double patterned amorphous carbon layer on the substrate as a hardmask. Optionally, a non-carbon based layer is deposited on the amorphous carbon layer as a capping layer before the pattern is transferred into the substrate.
摘要:
A method of etching a substrate is provided. The method of etching a substrate includes transferring a pattern into the substrate using a double patterned amorphous carbon layer on the substrate as a hardmask. Optionally, a non-carbon based layer is deposited on the amorphous carbon layer as a capping layer before the pattern is transferred into the substrate.
摘要:
In one implementation, a method is provided capable of etching a wafer to form devices including a high-k dielectric layer. The method includes etching an upper conductive material layer in a first plasma chamber with a low cathode temperature, transferring the wafer to a second chamber without breaking vacuum, etching a high-k dielectric layer in the second chamber, and transferring the wafer from the second chamber to the first plasma chamber without breaking vacuum. A lower conductive material layer is etched with a low cathode temperature in the first chamber. In one implementation, the high-k dielectric etch is a plasma etch using a high temperature cathode. In another implementation, the high-k dielectric etch is a reactive ion etch.
摘要:
Methods for forming an ultra thin structure using a method that includes trimming a mask layer during an etching process are provided. The embodiments described herein may be advantageously utilized to fabricate a submicron structure on a substrate having a critical dimension less than 55 nm and beyond. In one embodiment, a method of forming a submicron structure on a substrate may include providing a substrate having a patterned photoresist layer disposed on a film stack into an etch chamber, wherein the film stack includes at least a hardmask layer disposed on an underlying layer, trimming the photoresist layer to a first predetermined critical dimension, etching the hardmask layer through openings defined by the trimmed photoresist layer, trimming the hardmask layer to a second predetermined critical dimension, and etching the underlying layer through openings defined by the trimmed hardmask layer.
摘要:
Methods for etching high-k material at high temperatures are provided. In one embodiment, a method etching high-k material on a substrate may include providing a substrate having a high-k material layer disposed thereon into an etch chamber, forming a plasma from an etching gas mixture including at least a halogen containing gas into the etch chamber, maintaining a temperature of an interior surface of the etch chamber in excess of about 100 degree Celsius while etching the high-k material layer in the presence of the plasma, and maintaining a substrate temperature between about 100 degree Celsius and about 250 degrees Celsius while etching the high-k material layer in the presence of the plasma.
摘要:
In one implementation, a method for etching a flash memory high-k gate stack on a workpiece is provided which includes etching a conductive material layer in a low temperature plasma chamber and etching a high-k dielectric layer in a high temperature plasma chamber. The workpiece is transferred between the low temperature plasma chamber and the high temperature plasma chamber through a vacuum transfer chamber connecting the low temperature plasma chamber and the high temperature plasma chamber. In one embodiment, an integrated etch station for etching a high-k flash memory structure is provided, which includes an etch chamber configured for plasma etch processing of a conductive material layer connected via a transfer chamber to an etch chamber configured for plasma etch processing of a high-k dielectric layer.
摘要:
Wafers having a high K dielectric layer and an oxide or nitride containing layer are etched in an inductively coupled plasma processing chamber by applying a source power to generate an inductively coupled plasma, introducing into the chamber a gas including BCl3, setting the temperature of the wafer to be between 100° C. and 350° C., and etching the wafer with a selectivity of high K dielectric to oxide or nitride greater than 10:1. Wafers having an oxide layer and a nitride layer are etched in a reactive ion etch processing chamber by applying a bias power to the wafer, introducing into the chamber a gas including BCl3, setting the temperature of the wafer to be between 20° C. and 200° C., and etching the wafer with an oxide to nitride selectivity greater than 10:1. Wafers having an oxide layer and a nitride layer are etched in a an inductively coupled plasma processing chamber by applying a bias power to the wafer, applying a source power to generate an inductively coupled plasma, introducing into the chamber a gas including BCl3, setting the temperature of the wafer to be between 20° C. and 200° C., and etching the wafer with an oxide to nitride selectivity greater than 10:1.
摘要:
A method for processing a substrate disposed in a substrate process chamber having a source power includes transferring the substrate into the substrate process chamber. A trench is etched on the substrate by exposing the substrate to a plasma formed from a first etchant gas by applying RF energy from the source power system and biasing the plasma toward the substrate. Byproducts adhering to inner surfaces of the substrate process chamber are removed by igniting a plasma formed from a second etchant gas including a halogen source in the substrate process chamber without applying bias power or applying minimal bias power. Thereafter, the substrate is removed from the chamber. At least 100 more substrates are processed with the etching-a-trench step and removing-etch-byproducts step before performing a dry clean or wet clean operation on the chamber.
摘要:
Methods for forming anisotropic features for high aspect ratio application in etch process are provided in the present invention. The methods described herein advantageously facilitates profile and dimension control of features with high aspect ratios through a sidewall passivation management scheme. In one embodiment, sidewall passivations are managed by selectively forming an oxidation passivation layer on the sidewall and/or bottom of etched layers. In another embodiment, sidewall passivation is managed by periodically clearing the overburden redeposition layer to preserve an even and uniform passivation layer thereon. The even and uniform passivation allows the features with high aspect ratios to be incrementally etched in a manner that pertains a desired depth and vertical profile of critical dimension in both high and low feature density regions on the substrate without generating defects and/or overetching the underneath layers.