摘要:
An apparatus and a method for cleaning a wafer are described. A chamber has a substrate support. A nozzle is disposed above the substrate support to spray de-ionized water droplets. The nozzle is coupled to a source of de-ionized water and a source of nitrogen. The nozzle is configured to mix the de-ionized water and the nitrogen outside the nozzle to have independent flow rate control of the two fluids for an optimized atomization in terms of spray uniformity in droplet size and velocity distributions. The nozzle to wafer distance can be adjusted and tuned to have an optimized jet spray for efficiently removing particles or contaminants from a surface of a wafer without causing any feature damage.
摘要:
An apparatus and a method for cleaning a wafer are described. A chamber has a substrate support. A nozzle is disposed above the substrate support to spray de-ionized water droplets. The nozzle is coupled to a source of de-ionized water and a source of nitrogen. The nozzle is configured to mix the de-ionized water and the nitrogen outside the nozzle to have independent flow rate control of the two fluids for an optimized atomization in terms of spray uniformity in droplet size and velocity distributions. The nozzle to wafer distance can be adjusted and tuned to have an optimized jet spray for efficiently removing particles or contaminants from a surface of a wafer without causing any feature damage.
摘要:
A single-substrate cleaning apparatus and method of use are described. In an embodiment of the present invention, a liquid cleaning solution is dispensed in small volumes to form a substantially uniform static liquid layer over a substrate surface by atomizing the viscous liquid with an inert gas in a two-phase nozzle. In another embodiment of the present invention, after a layer of the cleaning solution is formed over the substrate to be cleaned, acoustic energy is applied to the substrate to improve the cleaning efficiency. In a further embodiment, cleaning solution precipitates are avoided by dispensing de-ionized water with a spray nozzle to gradually dilute the cleaning solution prior to dispensing de-ionized water with a stream nozzle.
摘要:
Embodiments of the invention provide a novel apparatus and methods for forming a contact structure having metal lines formed using an electrophoretic deposition process. A substrate having a conductive or semiconductive layer is covered with an insulating layer and patterned to expose the conductive or semiconductive layer. The substrate is exposed to a processing medium comprising charged particles immersed in a dielectric fluid. An electric field is optionally applied. The charged particles deposit onto the exposed portions of the substrate and are then solidified in a reflow process.
摘要:
A method and an apparatus is provided that may fix a point at which an etchant or a fluid sprayed from a nozzle impacts a substrate. By fixing a first angle measured between the inventive nozzle and a substrate support and fixing a process height of a nozzle relative to a substrate support, a second angle, measured between a fluid sprayed from the nozzle and a line tangent to a substrate support, may vary without affecting the fluid impact point.
摘要:
In one aspect, a spin-rinse-dry chamber comprises an adjustable nozzle. A calibration element may be positioned in the spin-rinse-dry chamber at which the adjustable nozzle may be directed. Targets (for example cross-hairs in one embodiment) may be located on the calibration element at a position corresponding to where it is desired to direct a fluid flow from the adjustable nozzle. Another aspect provides a method of calibrating a spin-rinse-dry chamber having an adjustable nozzle comprising inserting a calibration element having a similar contour as a substrate into the spin-rinse-dry chamber. Fluid is then directed through the adjustable nozzle at a selected target position located on the surface of the calibration element.
摘要:
Embodiments of the invention provide a novel apparatus and methods for forming a contact structure having metal lines formed using an electrophoretic deposition process. A substrate having a conductive or semiconductive layer is covered with an insulating layer and patterned to expose the conductive or semiconductive layer. The substrate is exposed to a processing medium comprising charged particles immersed in a dielectric fluid. An electric field is optionally applied. The charged particles deposit onto the exposed portions of the substrate and are then solidified in a reflow process.
摘要:
The disclosure generally relates to a method and apparatus for printing from a rotating source. In an exemplary embodiment, the disclosure relates to a facetted drum for simultaneously printing multiple pixels. The facetted drum includes a support structure and a plurality of printheads affixed to the support structure, each printhead having at least one microporous structure for receiving a first quantity of liquid ink having dissolved or suspended film material in a carrier fluid and dispensing a second quantity of ink material substantially free of the carrier fluid. The plurality of printheads are positioned proximal to a substrate to simultaneously print a plurality of spatially-discrete and image-resolved pixels on the substrate.
摘要:
In one embodiment, the disclosure relates to providing a first gas stream carrying vaporized material and depositing the vaporized material onto a substrate by directing a plurality of gas streams containing the vaporized material to a substrate, forming an gas curtain around the streams to prevent its dissemination beyond a target print area, and allowing the vaporized material to condense on the target print area. In another embodiment, heat is used to regulate the flow of the material and the thickness of the deposited layer.
摘要:
The disclosure generally relates to a method and apparatus for printing from a rotating source. In an exemplary embodiment, the disclosure relates to a facetted drum for simultaneously printing multiple pixels. The facetted drum includes a support structure and a plurality of printheads affixed to the support structure, each printhead having at least one microporous structure for receiving a first quantity of liquid ink having dissolved or suspended film material in a carrier fluid and dispensing a second quantity of ink material substantially free of the carrier fluid. The plurality of printheads are positioned proximal to a substrate to simultaneously print a plurality of spatially-discrete and image-resolved pixels on the substrate.