摘要:
A method is provided for determining an adhesive condition of a surface of a vehicle road using a statistical pattern recognition technique. A plurality of probability distribution functions is provided representing respective adhesive effects between the vehicle tire of a driven vehicle and the vehicle road. An index is calculated which represents a vehicle understeer characteristic. Probability analysis is applied for each of the road surface adhesive conditions as a function of the index. Each probability analysis is recursively updated. A likelihood factor is determined for each road surface adhesive condition as a function of each respective recursively updated probability analysis. Each respective road surface adhesive condition has a respective likelihood factor that identifies the likelihood of the road surface having the respective adhesive condition as a function of the index. The identified adhesive condition of the road surface is input into a vehicle control process.
摘要:
A method is provided for determining a state of a road condition using a linear model-based estimation technique. Two vehicle reference models are defined to represent vehicles operating under non-slippery and slippery road surfaces respectively. An index that reflects the vehicle understeer characteristics is also defined. Indices are determined from the reference models under the non-slippery road surface, the slippery road surface, and from vehicle sensor measurement, respectively. A first root mean square deviation is calculated between the index of reference model under non-slippery road surface and the index calculated based on sensor measurement. A second root mean square deviation is calculated between the index of reference model under slippery road surface and the index calculated based on sensor measurement. A probability analysis is applied as a function of probability density functions for identifying the condition of the road surface between a non-slippery road surface and a slippery road surface.
摘要:
A method is provided for determining an adhesive condition of a surface of a vehicle road using a statistical pattern recognition technique. A plurality of probability distribution functions is provided representing respective adhesive effects between the vehicle tire of a driven vehicle and the vehicle road. An index is calculated which represents a vehicle understeer characteristic. Probability analysis is applied for each of the road surface adhesive conditions as a function of the index. Each probability analysis is recursively updated. A likelihood factor is determined for each road surface adhesive condition as a function of each respective recursively updated probability analysis. Each respective road surface adhesive condition has a respective likelihood factor that identifies the likelihood of the road surface having the respective adhesive condition as a function of the index. The identified adhesive condition of the road surface is input into a vehicle control process.
摘要:
A method to control a vehicle includes monitoring desired vehicle force and moment, monitoring real-time corner constraints upon vehicle dynamics which includes monitoring corner states of health for the vehicle, and monitoring corner capacities for the vehicle. The method further includes determining a desired corner force and moment distribution based upon the desired vehicle force and moment and the real-time corner constraints, and controlling the vehicle based upon the desired corner force and moment distribution.
摘要:
A vehicle control architecture designed based on a top-down approach with abstraction and modularity. The control architecture includes a vehicle/environment sensing and perception processor that processes sensor signals, and motion planning processors that provide lane center trajectory planning and tracking command, lane change trajectory planning and tracking command, and forward and backward speed and target tracking command. The architecture also includes a driver command interpreter that interprets driver commands and a command integration processor that provides reference dynamics for vehicle lateral, roll and longitudinal dynamics. The architecture also includes a control integration and supervisory controller that provides control integration and outputs integrated longitudinal force command signals, integrated lateral force command signals, integrated yaw moment command signals and steering torque command signals that are used by a vehicle longitudinal controller and a vehicle lateral controller.
摘要:
A method for predicting the dynamics of a vehicle using information about the path on which the vehicle is travelling that has particular application for enhancing active safety performance of the vehicle, to improve driver comfort and to improve vehicle dynamics control. The method includes generating a preview of a path to be followed by the vehicle where the preview of the path is generated based on actual values of a plurality of vehicle parameters. The method further includes obtaining a corrected value of at least one of the plurality of vehicle parameters corresponding to the actual values of each of the plurality of vehicle parameters, wherein the corrected value of the at least one of the vehicle parameters is obtained based on a target path to be followed by the vehicle on the road, and wherein the target path is obtained on the basis of a plurality of road parameters.
摘要:
A vehicle control architecture designed based on a top-down approach with abstraction and modularity. The control architecture includes a vehicle/environment sensing and perception processor that processes sensor signals, and motion planning processors that provide lane center trajectory planning and tracking command, lane change trajectory planning and tracking command, and forward and backward speed and target tracking command. The architecture also includes a driver command interpreter that interprets driver commands and a command integration processor that provides reference dynamics for vehicle lateral, roll and longitudinal dynamics. The architecture also includes a control integration and supervisory controller that provides control integration and outputs integrated longitudinal force command signals, integrated lateral force command signals, integrated yaw moment command signals and steering torque command signals that are used by a vehicle longitudinal controller and a vehicle lateral controller.
摘要:
The current embodiment provides a method and gene therapy for treating or preventing radiation damage using a vector carrying a gene for extracellular superoxide dismutase (ECSOD). The gene therapy can be used to treat a patient with an effective amount of the therapy to limit damage resulting from exposure to radiation and radiation-like damage.
摘要:
A system and method for detecting the absence of contact between the hands of a driver of a vehicle and a steering wheel of the vehicle that have particular application in ensuring the proper functioning of various components of the driver assist steering systems and maintaining driver attentiveness. The method for detecting a no-contact condition between the hands of the driver of the vehicle and the steering wheel includes generating a model of the no-contact condition using a second-order transfer function. The method further includes obtaining a set of model-generated steering dynamics by estimating a plurality of parameters of the second-order transfer function and a set of measured steering dynamics using a plurality of sensors. The set of model-generated steering dynamics and the set of measured steering dynamics are then compared and the no-contact condition is detected based on this comparison.
摘要:
A vehicle steering control system for a vehicle/trailer combination that provides rear-wheel steering assist to improve the vehicle/trailer combination stability and handling performance. The control system provides an open-loop feed-forward control signal based on hand-wheel angle and vehicle speed. The control system includes a vehicle yaw rate command interpreter that provides a vehicle closed-loop feedback control signal based on the yaw rate of the vehicle, a trailer yaw rate command interpreter that provides a trailer closed-loop feedback control signal based on the yaw rate of the trailer, and a vehicle lateral acceleration command interpreter that provides a closed-loop feedback control signal based on the lateral acceleration of the vehicle. The closed-loop feedback signals are added together and then combined with the open-loop feed-forward control signal to provide the rear-wheel steering assist.