摘要:
A microelectronics device including a semiconductor device located at least partially over a substrate, a bombarded area located at least partially over the substrate and adjacent the semiconductor device, and a bombarded attenuator interposing the semiconductor device and the bombarded area.
摘要:
A method of manufacturing a memory device is provided. The method includes forming an electrode over a substrate. The method also includes forming an opening in the electrode to provide a tapered electrode contact surface proximate the opening. The method further includes forming a phase change feature over the electrode and on the tapered electrode contact surface.
摘要:
A phase change memory structure and method for forming the same, the method including providing a substrate comprising a conductive area; forming a spacer having a partially exposed sidewall region at an upper portion of the spacer defining a phase change memory element contact area; and, wherein the spacer bottom portion partially overlaps the conductive area. Both these two methods can reduce active area of a phase change memory element, therefore, reducing a required phase changing electrical current.
摘要:
A non-destructive technique and related array for writing and reading magnetic memory cells, including sampling a first signal of a selected read line corresponding to select memory cells, applying a magnetic field to the select memory cells, sampling a second signal of the selected read line, and comparing the first and second signals to determine a logic state of the select memory cells.
摘要:
A magnetic random access memory device (MRAM) and the method for forming the same are disclosed. The MRAM has a magnetic tunnel junction (MTJ) device, a first write line, and a second write line orthogonal to the first write line, wherein at least one of the first and second write lines has a width narrower than that of the MTJ.
摘要:
A magnetoresistive magnetic data storage product and a method for fabrication thereof both employ a magnetic data storage device formed over a substrate. The magnetic data storage device comprises a free magnetoresistive material layer separated from a pinned magnetoresistive material layer by a dielectric spacer material layer, each having a sidewall. The magnetic data storage product also comprises a sidewall spacer material layer formed annularly surrounding and covering the sidewall of at least one of the free magnetoresistive material layer and the pinned magnetoresistive material layer. The magnetic data storage product is fabricated with enhanced magnetic data storage density.
摘要:
A method and system is disclosed for concentrating high energy particles on a predetermined area on a target semiconductor substrate. A high energy source for generating a predetermined amount of high energy particles, and an electromagnetic radiation source for generating low energy beams are used together. The system also uses a mask set having at least one mask with at least one alignment area and at least one mask target area thereon, the mask target area passing more high energy particles then any other area of the mask. At least one protection shield is incorporated in the system for protecting the alignment area from being exposed to the high energy particles, wherein the mask is aligned with the predetermined target semiconductor substrate by passing the low energy beams through the alignment area, wherein the high energy particles generated by the high energy source pass through the mask target area to land on the predetermined area on the target semiconductor substrate.
摘要:
A circuit with an inter-module radiation interference shielding mechanism is disclosed. The circuit includes a circuit module producing a radiation field. At least one radiation shielding module is situated between the circuit module and another module that is vulnerable to the interference of the radiation field. The shielding module is substantially tangential to the radiation field.
摘要:
Disclosed herein is a magnetoresistive structure, for example useful as a spin-valve or GMR stack in a magnetic sensor, and a fabrication method thereof. The magnetoresistive structure uses twisted coupling to induce a perpendicular magnetization alignment between the free layer and the pinned layer. Ferromagnetic layers of the free and pinned layers are exchange-coupled using antiferromagnetic layers having substantially parallel exchange-biasing directions. Thus, embodiments can be realized that have antiferromagnetic layers formed of a same material and/or having a same blocking temperature. At least one of the free and pinned layers further includes a second ferromagnetic layer and an insulating layer, such as a NOL, between the two ferromagnetic layers. The insulating layer causes twisted coupling between the two ferromagnetic layers, rotating the magnetization direction of one 90 degrees relative to the magnetization direction of the other.
摘要:
A method and system is disclosed for concentrating high energy particles on a predetermined area on a target semiconductor substrate. A high energy source for generating a predetermined amount of high energy particles, and an electro-magnetic radiation source for generating low energy beams are used together. The system also uses a mask set having at least one mask with at least one alignment area and at least one mask target area thereon, the mask target area passing more high energy particles then any other area of the mask. At least one protection shield is incorporated in the system for protecting the alignment area from being exposed to the high energy particles, wherein the mask is aligned with the predetermined target semiconductor substrate by passing the low energy beams through the alignment area, wherein the high energy particles generated by the high energy source pass through the mask target area to land on the predetermined area on the target semiconductor substrate.