Abstract:
The invention relates to the discovery of a selective cell surface marker that permits the selection of a unique subset of pancreatic stem cells having a high propensity to differentiate into insulin-producing cells or into insulin-producing cell aggregates.
Abstract:
The invention relates to the discovery of a selective cell surface marker that permits the selection of a unique subset of pancreatic stem cells having a high propensity to differentiate into insulin-producing cells or into insulin-producing cell aggregates.
Abstract:
The invention relates to the discovery of a selective cell surface marker that permits the selection of a unique subset of pancreatic stem cells having a high propensity to differentiate into insulin-producing cells or into insulin-producing cell aggregates.
Abstract:
The present invention relates to methods of selecting pancreatic endocrine cells from total pancreatic cells by incubation with protein synthesis inhibitors.
Abstract:
This invention relates to the discovery that an intermediate, differentiated stage of pancreatic stem cells exist that can be matured in situ into a stable cell line that produces insulin in response to glucose. These cells are advantageous in that they are both expandable and stable in culture. This invention avoids the step of culturing the intermediate stage stem cells into later stage pancreatic cells.
Abstract:
Provided is a glucagon-like peptide-1 (GLP-1) analogue shown as the following formula, wherein X is selected from glycine and glycinamide. The GLP-1 analogue has a non-proteogenic amino acid residue in position 8 relative to the sequence GLP-1, and is acylated with a moiety comprising two acidic groups to the lysine residue in position 26. The GLP-1 analogue is resistant to dipeptidyl peptidase IV so as to have an extended half-life in vivo. Also provided is a use of the GLP-1 analogue in conquering blood sugar.
Abstract:
A cell locking method for a mobile terminal and a mobile terminal capable of locking a cell are disclosed in the present invention. The method includes: the mobile terminal acquiring a system identification (SID), a network identification (NID), a base station identifier (BASE ID) and a pseudo-random number (PN) of a current cell; judging whether the SID, NID, BASE ID and PN are already stored in a database of the mobile terminal, if yes, then setting the mobile terminal to a normal status; judging whether the SID, the NID, and the PN are already stored in the database of the mobile terminal and the database is not full, or whether the BASE ID and PN are already stored in the database of the mobile terminal, if yes, then transferring to D; and D. writing the SID, NID, BASE ID and PN into the database of the mobile terminal.
Abstract:
A method for spherically granulating and agglomerating metal particles such as tantalum and/or niobium powders is described in the present invention, which includes the steps of: a). comminuting the metal particles to form fine particles having D50 less than 50 μm; b). granulating the comminuted metal particles comprising volatile liquid, for example, tantalum and/or niobium particles comprising volatile liquid, to form wet spherical particles; c). still drying the wet spherical particles and removing volatile liquid to form flowable pre-agglomerated particles with increased bulk density; d). heat treating the pre-agglomerated particles; e). screening the heat treated powder to obtain the flowable agglomerated particles. The present invention provides a flowable spherical agglomerated metal particles, and especially tantalum and/or niobium particles having improved properties. The present agglomerated tantalum powder have a flow rate of at least about 2.0 g/sec, a BET surface area of from about 0.2 to about 6.0 m2/g, a FSSS of at least 1.0 μm, a Scott bulk density of from about 1.2 g/cm3 to about 5.5 g/cm3. The present agglomerated niobium powder have a flow rate of at least about 1.0 g/sec, a BET surface area of from about 0.5 to about 8.0 m2/g, a FSSS of at least 1.0 μm, a Scott bulk density of from about 0.7 g/cm3 to about 3.5 g/cm3. Said tantalum and/or niobium metal particles have improved pore size distribution of the sintered anodes and increased pellet crush strength. The present invention further provides an electrolytic capacitor anodes made from the tantalum and/or niobium particles according to the present invention having a capacitance of from about 5,000 μFV/g to about 300,000 μFV/g.
Abstract:
The polymorphic forms of the compound of Formula I, the preparation thereof including the preparation of the intermediates, the pharmaceutical compositions thereof and the uses of a polymorph above in the manufacture of medicaments for treating a disease, a disorder or a condition are disclosed.
Abstract:
The compound of Formula (I), pharmaceutically acceptable salts thereof, solvates thereof, chelates thereof, non-covalent complexes thereof or produgs of compounds mentioned above or the mixture of any form above mentioned are provided. The use of the compounds in manufacturing a medicament for the treatment and/or prevention of diabetes, obesity and related disorders.