摘要:
A side-slip velocity estimation module for a vehicle stability enhancement control system includes a side-slip acceleration estimation module that determines an estimated side-slip acceleration of a vehicle. A limited-frequency integrator integrates the estimated side-slip acceleration to determine an estimated side-slip velocity of the vehicle. A reset logic module clears an output of the limited-frequency integrator when a first condition occurs. The first condition is one of a straight-driving condition, a speed condition, and a sensor bias condition. The estimated side-slip velocity is compared to a desired side-slip velocity to produce a side-slip control signal. The side-slip control signal is combined with a yaw rate control signal to produce an actuator control signal. The actuator control signal is received by one of at least one brake actuator and a rear-wheel steering actuator to create a yaw moment to correct a dynamic behavior of the vehicle.
摘要:
An active front steering (AFS) system that provides hand-wheel damping. The AFS system includes a damping control sub-system that determines a hand-wheel angular velocity based on the rate of change of a hand-wheel angle signal. The damping control sub-system determines the damping control signal by multiplying the angular velocity of the hand-wheel angle signal with a control gain. The damping control signal is added to a steering signal from a variable gear ratio control sub-system to generate a steering command signal. The damping control sub-system sets to the damping control signal to zero if a signal from a vehicle stability enhancement sub-system is activated.
摘要:
A vehicle stability enhancement system for a vehicle having at least one vehicle subsystem includes at least one sensor for sensing at least one vehicle parameter, at least one vehicle control system for adjusting the at least one vehicle subsystem wherein the at least one vehicle control system includes a rear wheel steering control system, at least one memory including at least one set of gain factors, and a controller responsive to the at least one sensor and the at least one set of gain factors for controlling the at least one vehicle control system.
摘要:
A side-slip velocity estimation module for a vehicle stability enhancement control system includes a side-slip acceleration estimation module that determines an estimated side-slip acceleration of a vehicle. A limited-frequency integrator integrates the estimated side-slip acceleration to determine an estimated side-slip velocity of the vehicle. The limited-frequency integrator includes a feedback loop which incorporates a cutoff frequency for the integrator.
摘要:
A vehicle stability enhancement system for a vehicle having a vehicle subsystem includes a sensor for sensing a vehicle parameter, a vehicle control system for adjusting the vehicle subsystem, a memory having a register that includes a bank angle compensation control command, and a controller responsive to the sensor and the memory for controlling the vehicle control system.
摘要:
A side-slip velocity estimation module for a vehicle stability enhancement control system includes a side-slip acceleration estimation module that estimates a side-slip acceleration of a vehicle. A multiple-order integrator integrates the side-slip acceleration to generate an estimated side-slip velocity of the vehicle. A reset logic module clears an output of the multiple-order integrator when the vehicle experiences a straight-driving condition, when a speed of the vehicle is less than a predetermined speed, and/or when a sensor bias condition occurs. The multiple-order integrator includes at least two accumulators and at least two feedback loops. The estimated side-slip velocity is a weighted sum of outputs of at least one of the at least two accumulators. A sum of the at least two feedback loops offsets the estimated side-slip acceleration.
摘要:
A control system that employs closed-loop control for providing active vehicle rear-wheel steering, where the control system receives longitudinal wheel slip inputs to improve the vehicle directional stability. The longitudinal wheel slip inputs can be from one or more of wheel speed, traction control on and automatic braking system on. The control system includes an open-loop controller for generating an open-loop steering control signal, a yaw rate feedback controller for generating a yaw rate feedback signal, and a side-slip rate controller for generating a side-slip rate feedback signal. The open-loop steering control signal, the yaw rate feedback signal and the side-slip rate feedback signal are combined to generate the steering control signal to steer the vehicle rear wheels.
摘要:
A method of guiding a vehicle to a region for initiating a parallel parking maneuver. A region of feasible starting locations for successfully performing a parallel parking maneuver is determined by a processor. A position of the vehicle relative to the region of feasible starting locations is determined. A determination is made whether the vehicle is in a zero heading position. The vehicle is guided along an initial target path by controlling a steering actuator until the vehicle is in a zero heading position relative to the road of travel in response to the vehicle is not in the zero heading position. A planned path is generated that includes two arc-shaped trajectories extending between the vehicle at the zero heading position and a position within the region of feasible starting locations as determined by the processor. The steering actuator is controlled to follow the planned path to the feasible region.
摘要:
A method and system may determine, in a vehicle, a desired path around an object based on a location of the object relative to the vehicle, relative speed, road parameters and one or more vehicle parameters. The method and system may calculate one or more vehicle control parameter values which minimize a predicted deviation from the desired vehicle path. The method and system may determine whether the one or more vehicle control parameter values would cause the vehicle to exceed one or more vehicle stability constraints. If the one or more vehicle control parameter values would cause the vehicle to exceed one or more vehicle stability constraints, the one or more vehicle control parameter values may be reduced to one or more vehicle control parameter values not causing the vehicle to exceed the one or more vehicle stability constraints. The method and system may output the one or more vehicle control parameter values to a vehicle automated control device.
摘要:
In a vehicle, an optimal path curvature limited by one or more constraints may be determined. The constraints may be related to lateral jerk and one or more vehicle dynamics constraints. Based on the optimal path curvature, an optimal vehicle path around an object may be determined. The optimal vehicle path may be output to a collision avoidance control system. The collision avoidance control system may cause the vehicle to take a certain path.