Abstract:
A wind powered turbine with low voltage ride-through capability. An inverter is connected to the output of a turbine generator. The generator output is conditioned by the inverter resulting in an output voltage and current at a frequency and phase angle appropriate for transmission to a three-phase utility grid. A frequency and phase angle sensor is connected to the utility grid operative during a fault on the grid. A control system is connected to the sensor and to the inverter. The control system output is a current command signal enabling the inverter to put out a current waveform, which is of the same phase and frequency as detected by the sensor. The control system synthesizes current waveform templates for all three-phases based on a sensed voltage on one phase and transmits currents to all three-phases of the electrical system based on the synthesized current waveforms.
Abstract:
A wind powered turbine with low voltage ride-through capability. An inverter is connected to the output of a turbine generator. The generator output is conditioned by the inverter resulting in an output voltage and current at a frequency and phase angle appropriate for transmission to a three-phase utility grid. A frequency and phase angle sensor is connected to the utility grid operative during a fault on the grid. A control system is connected to the sensor and to the inverter. The control system output is a current command signal enabling the inverter to put out a current waveform, which is of the same phase and frequency as detected by the sensor. The control system synthesizes current waveform templates for all three-phases based on a sensed voltage on one phase and transmits currents to all three-phases of the electrical system based on the synthesized current waveforms.
Abstract:
A wind powered turbine with low voltage ride-through capability. An inverter is connected to the output of a turbine generator. The generator output is conditioned by the inverter resulting in an output voltage and current at a frequency and phase angle appropriate for transmission to a three-phase utility grid. A frequency and phase angle sensor is connected to the utility grid operative during a fault on the grid. A control system is connected to the sensor and to the inverter. The control system output is a current command signal enabling the inverter to put out a current waveform, which is of the same phase and frequency as detected by the sensor. The control system synthesizes current waveform templates for all three-phases based on a sensed voltage on one phase and transmits currents to all three-phases of the electrical system based on the synthesized current waveforms.
Abstract:
A wind powered turbine with low voltage ride-through capability. An inverter is connected to the output of a turbine generator. The generator output is conditioned by the inverter resulting in an output voltage and current at a frequency and phase angle appropriate for transmission to a three-phase utility grid. A frequency and phase angle sensor is connected to the utility grid operative during a fault on the grid. A control system is connected to the sensor and to the inverter. The control system output is a current command signal enabling the inverter to put out a current waveform, which is of the same phase and frequency as detected by the sensor. The control system synthesizes current waveform templates for all three-phases based on a sensed voltage on one phase and transmits currents to all three-phases of the electrical system based on the synthesized current waveforms.
Abstract:
A variable speed wind turbine employing a rotor connected to a multiplicity of synchronous generators with wound field or permanent magnet rotors. A passive rectifier and an inverter are used for power transfer back to the grid. A Turbine Control Unit (TCU) commands a required generator torque based on rotor speed and power output of the turbine inverters. Torque is controlled by regulating the DC current by control of the inverter. A main-shaft-damping filter is provided by measurement of the DC bus voltage. In high winds the turbine remains at a constant average output power through a constant torque command and a varying pitch command to a rotor pitch servo system. A set point is fixed at the inverter output such that output VAR load is minimized running the turbine at very nearly unity power factor. Dynamic VAR and power factor control is provided by a separate VAR apparatus.
Abstract:
A variable speed system for use in systems, such as, for example, wind turbines, is described. The system comprises a wound rotor induction generator, a torque controller and a proportional, integral derivative (PID) pitch controller. The torque controller controls generator torque using field oriented control, and the PID controller performs pitch regulation based on generator rotor speed.
Abstract:
A variable speed system for use in systems, such as, for example, wind turbines, is described. The system comprises a wound rotor induction generator, a torque controller and a proportional, integral derivative (PID) pitch controller. The torque controller controls generator torque using field oriented control, and the PID controller performs pitch regulation based on generator rotor speed.
Abstract:
A variable speed system for use in systems, such as, for example, wind turbines, is described. The system comprises a wound rotor induction generator, a torque controller and a proportional integral derivative (PID) pitch controller. The torque controller controls generator torque using field oriented control, and the PID controller performs pitch regulation based on generator rotor speed.
Abstract:
A variable speed system for use in systems, such as, for example, wind turbines, is described. The system comprises a wound rotor induction generator, a torque controller and a proportional, integral derivative (PID) pitch controller. The torque controller controls generator torque using field oriented control, and the PID controller performs pitch regulation based on generator rotor speed.
Abstract:
A variable speed system for use in systems, such as, for example, wind turbines, is described. The system comprises a wound rotor induction generator, a torque controller and a proportional, integral derivative (PID) pitch controller. The torque controller controls generator torque using field oriented control, and the PID controller performs pitch regulation based on generator rotor speed.