摘要:
A flip-chip bonding structure of a light-emitting element is provided. The structure improves a heat emission efficiency by using a metal column having a high thermal conductivity instead of a solder bump. The structure includes a light-emitting element, a sub-mount, and a metal column. The metal column connects the light-emitting element with the sub-mount electrically and thermally.
摘要:
A submount for a light emitting device package is provided. The submount includes a substrate; a first bonding layer and a second bonding layer which are separately formed on the substrate; a first barrier layer and a second barrier layer which are formed on the first bonding layer and on the second bonding layer, respectively; a first solder and a second solder which are formed on the first barrier layer and on the second barrier layer, respectively; and a first blocking layer and a second blocking layer which are formed around the first barrier layer and the second barrier layer, blocking the melted first solder and the melted second solder from overflowing during a flip chip process.
摘要:
A submount for a light emitting device package is provided. The submount includes a substrate; a first bonding layer and a second bonding layer which are separately formed on the substrate; a first barrier layer and a second barrier layer which are formed on the first bonding layer and on the second bonding layer, respectively; a first solder and a second solder which are formed on the first barrier layer and on the second barrier layer, respectively; and a first blocking layer and a second blocking layer which are formed around the first barrier layer and the second barrier layer, blocking the melted first solder and the melted second solder from overflowing during a flip chip process.
摘要:
A heat dissipating structure is flip-chip bonded to a light-emitting element and facilitates heat dissipation. The heat dissipating structure includes: a submount facing the light-emitting element and having at least one groove; a conductive material layer filled into at least a portion of the at least one groove; and a solder layer interposed between the light-emitting element and the submount for bonding. The heat dissipating structure and the light-emitting device having the same allow efficient dissipation of heat generated in the light-emitting element during operation.
摘要:
Provided is a method of manufacturing semiconductor light emitting devices including: forming light emitting structures by sequentially depositing a first material layer, an active layer and a second material layer; forming the roughness pattern on a region of the bottom of a substrate except at least a cleaving region for forming cleaving planes; and forming n-electrodes.
摘要:
Provided is a method of manufacturing semiconductor light emitting devices including: forming light emitting structures by sequentially depositing a first material layer, an active layer and a second material layer; forming the roughness pattern on a region of the bottom of a substrate except at least a cleaving region for forming cleaving planes; and forming n-electrodes.
摘要:
Provided is a method of manufacturing semiconductor light emitting devices including: forming light emitting structures by sequentially depositing a first material layer, an active layer and a second material layer; forming the roughness pattern on a region of the bottom of a substrate except at least a cleaving region for forming cleaving planes; and forming n-electrodes.
摘要:
Provided is a method of manufacturing semiconductor light emitting devices including: forming light emitting structures by sequentially depositing a first material layer, an active layer and a second material layer; forming the roughness pattern on a region of the bottom of a substrate except at least a cleaving region for forming cleaving planes; and forming n-electrodes.
摘要:
Example embodiments may provide a submount in to which a multi-beam laser diode may be flip-chip bonded and a multi-beam laser diode module including the submount. The submount may include a first submount and a second submount. The first submount may include a first substrate, a plurality of first solder layers formed on the first substrate corresponding to electrodes of the multi-beam laser diode, and a plurality of via holes that may penetrate the first substrate and may be filled with conductive materials to electrically connect to the first solder layers. The electrodes may be bonded to the first solder layers. The second submount may include a second substrate under the first substrate and a plurality of bonding pads corresponding to the number of electrodes formed on the second substrate to electrically connect to the conductive materials filled in the via holes.
摘要:
Example embodiments may provide a submount in to which a multi-beam laser diode may be flip-chip bonded and a multi-beam laser diode module including the submount. The submount may include a first submount and a second submount. The first submount may include a first substrate, a plurality of first solder layers formed on the first substrate corresponding to electrodes of the multi-beam laser diode, and a plurality of via holes that may penetrate the first substrate and may be filled with conductive materials to electrically connect to the first solder layers. The electrodes may be bonded to the first solder layers. The second submount may include a second substrate under the first substrate and a plurality of bonding pads corresponding to the number of electrodes formed on the second substrate to electrically connect to the conductive materials filled in the via holes.