摘要:
An arrangement of light sources is attached to a semiconductor wavelength converter. Each light source emits light at a respective peak wavelength, and the arrangement of light sources is characterized by a first range of peak wavelengths. The semiconductor wavelength converter is characterized by a second range of peak wavelengths when pumped by the arrangement of light sources. The second range of peak wavelengths is narrower than the first range of peak wavelengths. The semiconductor wavelength converter is characterized by an absorption edge having a wavelength longer than the longest peak wavelength of the light sources. The wavelength converter may also be used for reducing the wavelength variation in the output from an extended light source.
摘要:
An arrangement of light sources is attached to a semiconductor wavelength converter. Each light source emits light at a respective peak wavelength, and the arrangement of light sources is characterized by a first range of peak wavelengths. The semiconductor wavelength converter is characterized by a second range of peak wavelengths when pumped by the arrangement of light sources. The second range of peak wavelengths is narrower than the first range of peak wavelengths. The semiconductor wavelength converter is characterized by an absorption edge having a wavelength longer than the longest peak wavelength of the light sources. The wavelength converter may also be used for reducing the wavelength variation in the output from an extended light source.
摘要:
A wavelength converted light emitting diode (LED) device has an LED having an output surface. A multilayer semiconductor wavelength converter is optically bonded to the LED. At least one of the LED and the wavelength converter is provided with light extraction features.
摘要:
A light emitting diode (LED) has various LED layers provided on a substrate. A multilayer semiconductor wavelength converter, capable of converting the wavelength of light generated in the LED to light at a longer wavelength, is attached to the upper surface of the LED by a bonding layer. One or more textured surfaces within the LED are used to enhance the efficiency at which light is transported from the LED to the wavelength converter. In some embodiments, one or more surfaces of the wavelength converter is provided with a textured surface to enhance the extraction efficiency of the long wavelength light generated within the converter.
摘要:
An electroluminescent device emits light at a pump wavelength. A first photoluminescent element covers first and second regions of the electroluminescent device and converts at least some of the pump light from the first region of the electroluminescent device to light at a first wavelength. A second photoluminescent element covers the second region of the electroluminescent device without covering the first region of the electroluminescent device and converts at least some of the light of the pump wavelength to light at a second wavelength different from the first wavelength. In some embodiments the first and second photoluminescent elements convert substantially all of the pump light incident from the first and second regions of the electroluminescent device respectively. An etch-stop layer may separate the first and second photoluminescent elements.
摘要:
A projection system and a display that incorporates the projection system are provided. The projection system includes at least one electroluminescent device that emits a first wavelength of light, at least one semiconductor multilayer stack that downconverts the first wavelength of light to a second wavelength of light, and a scanning optical element that transmits the light along a scanned direction. The electroluminescent device can be part of an array of electroluminescent devices, and can be monolithic. The semiconductor multilayer stack can be part of an array of semiconductor multilayer stacks, and can also be monolithic. The scanning optical element can be positioned to scan the electroluminescent device across the semiconductor multilayer stack, or it can be positioned to scan the downconverted light after it has left the semiconductor multilayer stack.
摘要:
A method of forming a light conversion element includes providing a semiconductor construction having a first photoluminescent element epitaxially grown together with a second photoluminescent element. A first region is etched in the first photoluminescent element from a first side of the semiconductor construction and a second region is etched in the second photoluminescent element from a second side of the semiconductor construction. In some embodiments the wavelength converter is attached to an electroluminescent element, such as a light emitting diode (LED).
摘要:
A light emitting device includes a wavelength converter attached to a light emitting diode (LED). The wavelength converter may have etched patterns on both the first and second sides. In some embodiments the first and second sides of the converter each include a respective structure having a different width at its top than at its base. The wavelength converter may include a first photoluminescent element substantially overlying a first region of the LED without overlying a second region of the LED, while a second photoluminescent element substantially overlies the second region without overlying the first region. In some embodiments a passivation layer is disposed over the etched pattern of the first side. A window layer may be disposed between the first and second photoluminescent elements, with non-epitaxial material disposed on first and second sides of one region of the window layer.
摘要:
A method of forming a light conversion element includes providing a semiconductor construction having a first photoluminescent element epitaxially grown together with a second photoluminescent element. A first region is etched in the first photoluminescent element from a first side of the semiconductor construction and a second region is etched in the second photoluminescent element from a second side of the semiconductor construction. In some embodiments the wavelength converter is attached to an electroluminescent element, such as a light emitting diode (LED).
摘要:
Electrically pixelated luminescent devices, methods for forming electrically pixelated luminescent devices, systems including electrically pixelated luminescent devices, and methods for using electrically pixelated luminescent devices are described. More specifically, electrically pixelated luminescent devices that have inner and outer semiconductor layers and a continuous light emitting region, as well as individually addressable electrodes are described.