摘要:
Embodiments of the invention provide a sensor for detecting the presence of fluid in an absorbent article. The sensor may include a fluid activated battery. Fluid received in the absorbent article may connect electrodes of the fluid activated battery and cause a voltage to be generated between battery electrodes. The voltage generated between the electrodes may provide power to the sensor circuit. In one embodiment, the fluid activated battery may be configured to detect the presence of fluid in the absorbent article and the presence and/or amount of particular substances in the received fluid.
摘要:
In accordance with one embodiment of the present disclosure an absorbent article capable of indicating the presence or absence of urine as well as impending leakage of urine is disclosed. The absorbent article includes a substantially liquid impermeable layer, a liquid permeable layer, and an absorbent core positioned between the substantially liquid impermeable layer and the liquid permeable layer. A plurality of sensors are integrated into the article across the width of the article and positioned such that the sensors are in fluid communication with urine when provided by a wearer of the article. At least one of the sensors comprises a pH indicator. At least one of the sensors is capable of indicating the presence or absence of urine and at least one of the sensors is capable of indicating impending leakage of urine from the article.
摘要:
In accordance with one embodiment of the present disclosure an absorbent article capable of indicating the presence or absence of urine as well as impending leakage of urine is disclosed. The absorbent article includes a substantially liquid impermeable layer, a liquid permeable layer, and an absorbent core positioned between the substantially liquid impermeable layer and the liquid permeable layer. A plurality of sensors are integrated into the article across the width of the article and positioned such that the sensors are in fluid communication with urine when provided by a wearer of the article. At least one of the sensors comprises a pH indicator. At least one of the sensors is capable of indicating the presence or absence of urine and at least one of the sensors is capable of indicating impending leakage of urine from the article.
摘要:
The present invention relates to a color-changing material and to a multiple-component material that includes a color-changing composition. The color-changing materials and color-changing compositions are capable of changing color in order to indicate a change in condition, such as a change in pH. The color-changing materials and color-changing compositions include a hydrogel-forming composition, a charged colorant and a pH adjuster. The hydrogel-forming composition includes at least one charged species.
摘要:
The present invention relates to a color-changing material and to a multiple-component material that includes a color-changing composition. The color-changing materials and color-changing compositions are capable of changing color in order to indicate a change in condition, such as a change in pH. The color-changing materials and color-changing compositions include a hydrogel-forming composition, a charged colorant and a pH adjuster. The hydrogel-forming composition includes at least one charged species.
摘要:
A diagnostic method and associated test kit for detecting an analyte residing in a test sample is provided. A sample membrane is utilized having a collection region and a detection region, the collection region having a known saturation volume for the intended test sample. A barrier is defined between the collection region and the detection region. The collection region is saturated with the test sample having a volume of less than about 100 microliters so that a known volume of the test sample is contained in the collection region. The barrier is removed from between the collection region and detection region of the membrane and a diluent is supplied to the collection region of the membrane to facilitate flow of the test sample from the collection region to the detection region of the membrane.
摘要:
A luminescent particle having a luminescent core structure formed from at least one type of luminescent metallic cluster complex and a shell that covers said core structure is described. The luminescent core structure includes one or more aggregates of metal cluster complexes. The shell has one or more layers of thin films formed predominately of organic or inorganic polymers, hydrid polymers, or combinations thereof. The luminescent particles can be adapted for optical detection or imaging applications. Methods of fabricating the various iterations of the luminescent particles are also provided.
摘要:
Various techniques for controlling the flow of a test sample through an electrochemical-based assay device are provided. The assay device contains a porous membrane provided with certain properties to selectively control the flow of a test sample to a detection working electrode. The detection working electrode communicates with affinity reagents, such as redox mediators and capture ligands. For instance, capture ligands that are specific binding members for the analyte of interest are applied to the detection electrode to serve as the primary location for detection of the analyte.
摘要:
The present invention relates to a color-changing material and to a multiple-component material that includes a color-changing composition. The color-changing materials and color-changing compositions are capable of changing color in order to indicate a change in condition, such as a change in pH. The color-changing materials and color-changing compositions include a hydrogel-forming composition, a charged colorant and a pH adjuster. The hydrogel-forming composition includes at least one charged species.
摘要:
A diagnostic method and associated test kit for detecting an analyte residing in a test sample is provided. A sample membrane is utilized having a collection region and a detection region, the collection region having a known saturation volume for the intended test sample. A barrier is defined between the collection region and the detection region. The collection region is saturated with the test sample having a volume of less than about 100 microliters so that a known volume of the test sample is contained in the collection region. The barrier is removed from between the collection region and detection region of the membrane and a diluent is supplied to the collection region of the membrane to facilitate flow of the test sample from the collection region to the detection region of the membrane.