Abstract:
A DLL circuit includes a delay line (CDL) (10) that delays a clock signal at a relatively coarse adjustment pitch, a delay line (FDL) (20) that delays the clock signal at a relatively fine adjustment pitch, and phase detecting circuits and counter control circuits that control delay amounts of the delay lines (10, 20). The counter control circuits control the delay line (10) by a linear search method, and control the delay line (20) by a binary search method. As a result, even when the number of bits of the count signal for adjusting the delay line (20) is increased, a delay amount can be determined at a high speed.
Abstract:
A voltage controlled oscillator that is a differential ring oscillator type voltage controlled oscillator that, by connecting in cascade differential delay elements to which differential clock signals of a mutually reverse phase are input and controlling the current that flows to the differential delay elements by a bias voltage, controls a delay amount of this differential clock signal, having a phase detection portion that outputs a detection signal by comparing an output voltage of the differential output of any differential delay element and a reference voltage that is set to a voltage that detects an abnormal operation, and a cross-coupled circuit that is provided at each of the differential delay elements and, when the detection signal is input, amplifies the potential difference between the pair of differential output terminals.
Abstract:
A delay circuit includes a first delay line circuit having a plurality of stages of delay units, a second delay line circuit having a plurality of stages of delay units, a plurality of transfer circuits provided in association with respective stages of the delay units of the first delay line circuit, the transfer circuits controlling the transfer of the outputs of the delay units of the first delay line circuit to associated stages of the delay units of the second delay line circuit. The delay units of respective stages of the first delay line circuit inverting input signals. Each stage delay unit of the second delay line circuit includes a logic circuit receiving an output signal of the transfer circuit associated with the delay unit in question and an output signal of a preceding stage to send an output signal to a following stage. The duty ratio is rendered variable by independently selecting the rising edge of the input signal and a propagation path of the falling edge.
Abstract:
Disclosed is a semiconductor memory device, in which the refresh period of a fail cell or cells is set so as to be shorter than that of the normal cells, comprises a control circuit for exercising control in such a manner that, if, when refreshing the cell of a first address, generated responsive to a refresh command, with an input control signal being of a first value, a second address, differing as to the value of a predetermined bit from the first address, is determined to correspond to a fail cell, based on the information ore-programmed in a refresh redundant ROM, the cell of the second address is refreshed, and also in such a manner that, if, with the input control signal of a second value, the second address, differing as to the value of a predetermined bit from the first address, is determined to correspond to a fail cell, based on the predetermined information, only the cell of the second address is refreshed, without refreshing the cell of the first address, generated responsive to the refresh command.
Abstract:
Disclosed herein is a device including a timing control circuit that receives a strobe signal supplied from outside to generate an internal strobe signal that is used as a timing signal to latch a data signal. An operation state of the timing control circuit is changed according to temperature change so as to keep an output timing of the internal strobe signal with respect to an input timing of the strobe signal.
Abstract:
A paper press member 240 configured to be capable of advancing and retracting with respect to a paper guide 220 is provided between a paper feed roller 234 and the front end in the paper feed direction of paper loaded in a manual feed tray 230. When a plurality of sheets of paper enter into the press-contact section between the paper feed roller 234 and a reverse roller 235, the reverse roller 235 is rotated in the reverse direction to retract the sheet on the reverse roller side to the manual feed tray 230. At this time, by causing the paper press member 240 to project from the upper surface of the paper guide 220, the sheet to be retracted and the paper press member 240 come into contact with each other, so that the travel amount of the sheet when retracting the sheet is reduced.
Abstract:
Disclosed is a timing control circuit which receives a first clock having a period T1 and a group of second clocks of L different phases (where L is a positive integer) spaced apart from each other at substantially equal intervals and which generates a fine timing signal delayed from the rising edge of the first clock by a delay td of approximately td=m·T1+n·(T2/L), where m and n are non-negative integers. The timing control circuit has a coarse delay circuit and a fine delay circuit. The coarse delay circuit counts the rising edges of the first clock after an activate signal is activated and generates a coarse timing signal delayed from the first clock by approximately m·T1. The fine delay circuit has a circuit which, after the activate signal is activated, detects a second clock, which has a rising edge that immediately follows the rising edge of the first clock, from among the group of L-phase second clocks. Using the edge-detection information, the fine delay circuit generates a fine timing signal for which the amount of delay from the coarse timing signal is approximately n·(T2/L). The values of m and n can be set by registers.
Abstract:
A duty detection circuit includes discharge transistors, charge transistors, detection lines, and a comparator circuit that detects a potential difference of these detection lines, and also includes a gate circuit that controls the discharge transistors and the charge transistors in response to the internal clock signal of an even cycle. As a result, the detection lines are charged and discharged in response to the internal clock signal of the even cycle. Consequently, the duty detection circuit can be applied to a multi-phase DLL circuit, and a potential difference appearing in the detection line can be sufficiently secured.
Abstract:
A sheet feeder has a feed passage and includes feed roller pairs, sensors, and a controller. The feed roller pairs are arranged along the feed passage and feed sheets of paper in a feed direction along the passage by nipping the sheets. Each of the sensors is fitted at or near one of the feed roller pairs and senses a specified point on each of the sheets when the sheet is nipped by at least the associated roller pair. The controller includes a memory for storing reference feed timings as proper feed timings at each of which the specified points on the sheets should pass one of the sensors. The controller finds the real feed timing when each of the sensors senses the specified point on the sheet nipped by at least the associated roller pair. When each of the sensors senses the specified point on the sheet nipped by at least the associated roller pair, the controller finds the time difference between the associated reference feed timing and the associated real feed timing and controls, according to the found time difference, the feed speed at which the feed roller pair or pairs nipping the sheet feed it.
Abstract:
A DLL circuit comprising: delay circuits which output first and second delayed clock signals obtained by delaying the reference clock signal by a delay times selected according to control signals; an interpolation circuit which interpolates a phase difference between the delayed clock signals to output an internal clock signal; an output circuit which generates a predetermined signal; a dummy output circuit which has the same transmission characteristics as the output circuit and outputs a feedback clock signal having the same phase as the predetermined signal; a phase comparison circuit which compares phases of the reference clock signal and the feedback clock signal; delay control circuits which controls the control signals in a direction where both phases are equal; wherein the delay time of the second delayed clock signal is larger than the first delayed clock signal by an amount equivalent to one cycle of the reference clock signal.