摘要:
A process for producing seamless pipes which comprises conducting a piercing rolling step, a elongating rolling step using a mandrel bar, and a sizing rolling step and subsequently conducting a product heat treatment. In the process, when the carbon-equivalent weight, namely the sum of the weight of graphite in the lubricant and the carbon content in the organic binder, per unit area of the lubricant adhering to the mandrel bar surface in the above-mentioned step of elongating rolling is expressed by C (g/m2) or the maximum extent of carburization in the inner surface of the pipe to be heat-treated but prior to the heat treatment is expressed by ΔC (% by mass), the heating temperature for the pipe to be heat-treated is expressed by T (° C.), and the time during which a decarburizing gas is blown into the inside of the pipe to be heat-treated is expressed by t1 or t2 (seconds), and further, the blowing time calculated taking into account the wall thickness reduction in the step of cold working is expressed by t3 or t4 (seconds), a predetermined relation is satisfied and the actual decarburizing gas blowing time in the heat treatment is longer than the time t1, t2, t3 or t4 (seconds), whereby seamless stainless steel pipes reduced in carburized layer formation can be produced even when the carbon adhesion to the pipe inner surface is caused in, for example, mandrel mill rolling.
摘要翻译:一种生产无缝管的方法,包括进行穿孔轧制步骤,使用芯棒的拉伸轧制步骤和施胶轧制步骤,随后进行产品热处理。 在该过程中,当上述步骤中碳当量重量即润滑剂中的石墨重量与有机粘合剂中的碳含量的总和相对于在芯棒表面附着的润滑剂的单位面积时, 拉伸轧制由C(g / m 2)表示,或被热处理的管内表面的最大渗碳量表示为热处理之前的ΔC(质量%),加热温度为 待热处理的管道由T(℃)表示,并且将脱碳气体吹入待热处理管内的时间由t1或t2(秒)表示,此外, 考虑到冷加工步骤中的壁厚减少而计算的吹送时间由t3或t4(秒)表示,满足预定关系,并且热处理中的实际脱碳气体吹送时间长于时间t1, t2,t3或t4(秒),由此海 即使当在例如芯棒式无缝管轧机轧制中引起对内表面的碳附着时,也可以生产减少渗碳层形成的无尘不锈钢管。
摘要:
A process for stainless-steel pipe production which comprises piercing rolling a raw material stainless steel containing, by mass, Cr: 10-30%, to give a hollow shell, elongating rolling the hollow shell using a mandrel bar, together with a graphite-free lubricant, to give a finishing rolling blank pipe and heating the blank pipe in a reheating furnace and subjecting the same to finishing rolling by sizing rolling to produce a hot-finished pipe, and then subjecting this pipe as a mother pipe to cold working to produce a stainless-steel pipe. In the reheating furnace, the finishing rolling blank pipe is heated to 1000° C. or more and subjected to heating in which an oxidizing gas is blown into the pipe inside, whereby a stainless-steel pipe which is inhibited from forming a carburized layer in the pipe inner surface can be produced. When the finishing rolling by sizing rolling to give a cold working mother pipe is carried out by stretch reducer rolling at 860-1050° C., an annealing heat treatment of the mother pipe for cold working can be omitted. Thus, a stainless-steel pipe having excellent surface quality can be efficiently produced.
摘要:
A process for stainless-steel pipe production which comprises piercing rolling a raw material stainless steel containing, by mass, Cr: 10-30%, to give a hollow shell, elongating rolling the hollow shell using a mandrel bar, together with a graphite-free lubricant, to give a finishing rolling blank pipe and heating the blank pipe in a reheating furnace and subjecting the same to finishing rolling by sizing rolling to produce a hot-finished pipe, and then subjecting this pipe as a mother pipe to cold working to produce a stainless-steel pipe. In the reheating furnace, the finishing rolling blank pipe is heated to 1000° C. or more and subjected to heating in which an oxidizing gas is blown into the pipe inside, whereby a stainless-steel pipe which is inhibited from forming a carburized layer in the pipe inner surface can be produced. When the finishing rolling by sizing rolling to give a cold working mother pipe is carried out by stretch reducer rolling at 860-1050° C., an annealing heat treatment of the mother pipe for cold working can be omitted. Thus, a stainless-steel pipe having excellent surface quality can be efficiently produced.
摘要:
A process for producing seamless pipes which comprises conducting a piercing rolling step, a elongating rolling step using a mandrel bar, and a sizing rolling step and subsequently conducting a product heat treatment. In the process, when the carbon-equivalent weight, namely the sum of the weight of graphite in the lubricant and the carbon content in the organic binder, per unit area of the lubricant adhering to the mandrel bar surface in the above-mentioned step of elongating rolling is expressed by C (g/m2) or the maximum extent of carburization in the inner surface of the pipe to be heat-treated but prior to the heat treatment is expressed by ΔC (% by mass), the heating temperature for the pipe to be heat-treated is expressed by T (° C.), and the time during which a decarburizing gas is blown into the inside of the pipe to be heat-treated is expressed by t1 or t2 (seconds), and further, the blowing time calculated taking into account the wall thickness reduction in the step of cold working is expressed by t3 or t4 (seconds), a predetermined relation is satisfied and the actual decarburizing gas blowing time in the heat treatment is longer than the time t1, t2, t3 or t4 (seconds), whereby seamless stainless steel pipes reduced in carburized layer formation can be produced even when the carbon adhesion to the pipe inner surface is caused in, for example, mandrel mill rolling.
摘要:
In the cold rolling process by pilger rolling that holds a mandrel between each of paired roll-dies, by optimizing the side relief rate SR and the mandrel factors like the taper θ1 in the primary deformation zone of the mandrel and the taper θ2 in the final size reduction zone thereof, and the feed rate F of the workpiece material, and at the same time by properly adjusting the relationship between the side relief rate SR and the feed rate F, the dimension-related shape characteristics (near-perfect round shape) of the tube inside surface after the final finishing rolling process by pilger rolling can be ascertained to thereby ensure excellent surface property without requiring a new apparatus, and further without causing the decrease of the product yield and/or the increase of the manufacturing costs. Thus, this can be widely applied for producing steam generator tubes which exhibits high S/N ratio in the inner coil eddy current testing.
摘要:
A method for producing a duplex stainless steel pipe having a minimum yield strength of 758.3 to 965.2 MPa, comprises first hot working and optionally solution heat treating a duplex stainless steel material pipe having a chemical composition consisting, by mass %, of C: 0.03% or less, Si: 1% or less, Mn: 0.1 to 4%, Cr: 20 to 35%, Ni: 3 to 10%, Mo: 0 to 6%, W: 0 to 6%, Cu: 0 to 3% and N: 0.15 to 0.60%, the balance being Fe and impurities. The pipe is then cold rolled under conditions that the working ratio Rd, in terms of the reduction of area, in the final cold rolling step falls within a range from 10 to 80%, and formula (1) is satisfied: Rd=exp[{In(MYS)−In(14.5×Cr+48.3×Mo+20.7×W+6.9×N)}/0.195] (1) wherein Rd is a reduction in area %, MYS is the targeted yield strength (MPa), and Cr, Mo, W and N are in mass %.
摘要:
[Problem to be Solved] A high alloy pipe can be produced that has not only a corrosion resistance required for oil well pipes but also has a targeted strength, without excessively adding alloying components, by selecting the working conditions at the time of the cold rolling.[Solution] A method for producing a high alloy pipe having a minimum yield strength of 758.3 to 965.2 MPa, comprising: preparing a high alloy material pipe having a chemical composition consisting, by mass %, of C: 0.03% or less, Si: 1.0% or less, Mn: 0.3 to 5.0%, Ni: 25 to 40%, Cr: 20 to 30%, Mo: 0 to 4%, Cu: 0 to 3% and N: 0.05 to 0.50%, and the balance being Fe and impurities, by a hot working or further by a solid-solution heat treatment; and producing the high alloy pipe by subsequently subjecting the high alloy material pipe to a cold rolling, wherein the cold rolling is performed under the conditions that the working ratio Rd, in terms of the reduction of area, in the final cold rolling step falls within a range of larger than 30% and equal to or less than 80%, and the following formula (1) is satisfied: Rd(%)≧(MYS−520)/3.1−(Cr+6×Mo+300×N) (1) wherein Rd and MYS signify the working ratio (%) in terms of the reduction of area and the targeted yield strength (MPa), respectively, and Cr, Mo and N signify the contents (mass %) of the individual elements, respectively.
摘要:
The present disclosure relates generally to the field of nucleic acids and, more particularly, to aptamers capable of binding to β-NGF; pharmaceutical compositions comprising such β-NGF aptamers; and methods of making and using the same.
摘要:
A high-temperature material transferring member including a coating film formed on a surface of base metal, wherein the coating film is a composite coating film using a mixed powder made up of: a Co-based alloy powder containing, in mass %, 0.03 to 0.6% of C, 0.2 to 3% of Si, 22 to 35% of Cr, and more than 50% of Co; and a Cr carbide powder, the composite coating film is formed by the plasma powder overlaying process. The high-temperature material transferring member has excellent build-up resistance particularly in a gas atmosphere of 1100° C. or more. The high-temperature material transferring member has excellent in build-up resistance, oxidation resistance, and heat cracking resistance.
摘要:
In producing an animation by making a combination of basic motions of a moving body, an animation production apparatus acquires a type of each of the basic motions constituting a predetermined motion, acquires spatial data on an object, including the moving body, in a virtual space for each of the basic motions, produces key frames corresponding to each of the basic motions, acquires motion time information for each of the basic motions, produces an animation on the basis of the key frames and the motion time information, stores animation information including the spatial data and the motion time information in a state associated with each of the basic motions, extracts reusable information from the animation information for each of the basic motions at an alteration of an animation, and stores a previously produced motion procedure as a work model. This enables efficient and easy alteration of a produced animation.