摘要:
A receiver (100) adjusts its overall gain based on the detected power level of an incoming signal. The receiver is built with two detectors (D1, D2) which operate with different detecting ranges within the dynamic range of the incoming signal. If the actual power level of the incoming signal falls within one of the resolving ranges, an automatic gain control adjusts the gain of the receiver to a corresponding gain value. If not, the resolving range of one of the two detectors is shifted and eventually reduced to cover the portion of the dynamic range in which the power level is comprised. The gain of the receiver is then temporarily adjusted and a new measurement is carried out by the detector using the new resolving range. The AGC then re-adjusts the gain of the receiver based on the measurement given by the modified detector.
摘要:
A receiver (100) adjusts its overall gain based on the detected power level of an incoming signal. The receiver is built with two detectors (D1, D2) which operate with different detecting ranges within the dynamic range of the incoming signal. If the actual power level of the incoming signal falls within one of the resolving ranges, an automatic gain control adjusts the gain of the receiver to a corresponding gain value. If not, the resolving range of one of the two detectors is shifted and eventually reduced to cover the portion of the dynamic range in which the power level is comprised. The gain of the receiver is then temporarily adjusted and a new measurement is carried out by the detector using the new resolving range. The AGC then re-adjusts the gain of the receiver based on the measurement given by the modified detector.
摘要:
The invention features a monitoring device that measures a patient's vital signs (e.g. blood pressure). The device features a first sensor configured to attach to a first portion of the patient's body that includes: i) a first electrode configured to generate a first electrical signal from the first portion of the patient's body; ii) a first light-emitting component; and iii) a first photodetector configured to receive radiation from the first portion of the patient's body after the radiation is emitted by the first light-emitting component and in response generate a first optical waveform. The device also features a second sensor that includes essentially the same components. An amplifier system, in electrical contact with the first and second electrodes, receives first and second electrical signals from the two sensors to generate an electrical waveform. A processor, in electrical contact with the amplifier system, receives the electrical waveform, the first optical waveform, and the second optical waveform. The processor runs computer code that processes the input waveforms with an algorithm to determine at least one of the patient's vital signs.
摘要:
The invention provides a system that determines if a patient has Metabolic Syndrome, and in response provides a disease-management program that helps reduce medical risks associated with this malady. The system features a device configured to collect glucose information and blood pressure information, and then transmit this information to a central computer system. The system also includes a database configured to receive triglyceride information and cholesterol information from an external blood test, and a central computer system featuring: 1) a communication interface configured to communicate with the device to receive glucose and blood pressure information and with the database to receive triglyceride and cholesterol information; 2) a user interface configured to accept patient information; and 3) a processor configured to operate an algorithm that processes the glucose, blood pressure, triglyceride, cholesterol, and patient information to determine if the patient has Metabolic Syndrome.
摘要:
The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
摘要:
The invention provides a system for monitoring a patient that includes: 1) a blood test that measures an Apo E genotype or a derivative thereof from the patient to generate Apo B information; 2) a database that receives and stores the patient's Apo E information; and 3) an Internet-based system connected to the database and configured to process the Apo E information with an algorithm that, in response, generates a diet and treatment plan for the patient.
摘要:
The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
摘要:
The invention provides a method for measuring a patient's blood pressure featuring the following steps: 1) measuring a first time-dependent optical signal with a first optical sensor; 2) measuring a second time-dependent optical signal with a second optical sensor; 3) measuring a time-dependent electrical signal with an electrical sensor; 4) estimating the patient's arterial properties using either the first or second time-dependent optical signal; 5) determining a pulse transit time (PTT) from the time-dependent electrical signal and at least one of the first and second time-dependent optical signals; and 6) calculating a blood pressure value using a mathematical model that includes the PTT and the patient's arterial properties.
摘要:
The invention provides a monitor for measuring blood pressure and other vital signs from a patient without using a cuff. The invention provides a hand-held device for measuring vital signs (e.g. blood pressure) from a patient that features: i) a housing that encloses a first sensor, that includes a first electrode and a first optical system configured to generate a first optical signal; ii) a second sensor that includes a second electrode and a second optical system configured to generate a second optical signal; iii) an amplifier system, in electrical contact with the first and second electrodes, configured to processes electrical signals from the first and second electrodes to generate an electrical waveform; and iv) a microprocessor, in electrical communication with the amplifier system, first optical system, and second optical system, the microprocessor configured to process the electrical waveform and first and second optical signals with an algorithm to determine at least one of the patient's vital signs.
摘要:
The invention features a monitoring device that measures a patient's vital signs (e.g. blood pressure). The device features a first sensor configured to attach to a first portion of the patient's body that includes: i) a first electrode configured to generate a first electrical signal from the first portion of the patient's body; ii) a first light-emitting component; and iii) a first photodetector configured to receive radiation from the first portion of the patient's body after the radiation is emitted by the first light-emitting component and in response generate a first optical waveform. The device also features a second sensor that includes essentially the same components. An amplifier system, in electrical contact with the first and second electrodes, receives first and second electrical signals from the two sensors to generate an electrical waveform. A processor, in electrical contact with the amplifier system, receives the electrical waveform, the first optical waveform, and the second optical waveform. The processor runs computer code that processes the input waveforms with an algorithm to determine at least one of the patient's vital signs.