Abstract:
A cam activated circuit card clamp is provided. The circuit card clamp is comprised of a base member (204), a leverage arm (412), and a cam activation shaft (422). The circuit card clamp is also comprised of one or more cams (410-1, 410-2, 410-3, 410-4), one or more ramp members (308-1, 308-2, 308-3, 308-4), and one or more wedge members (418-1, 418-2, 418-3, 418-4). The cam activation shaft is coupled to the leverage arm. The cams are in contact with the cam activation shaft which has one or more compression springs disposed thereon. The cams are adapted to pivot about a pivot shaft when actuated. The cams also have a surface adapted to engage an adjacent wedge member when actuated. Each ramp member has an inclined surface adapted to deflect an adjacent wedge member when the adjacent wedge member is compressed against the ramp member. Each wedge member has a surface adapted to engage an adjacent cam. Each wedge member also has an inclined surface adapted to slidingly engage an adjacent ramp member when compressed together. A method for applying a clamping force to a circuit card is also provided.
Abstract:
System for dynamically tracking a position of a target with an antenna in a communication system. The system includes an antenna system (410) configured for generating a sum and difference antenna pattern (201-1, 201-2). A sum RF channel (401) is coupled to a sum channel output of the antenna system. A difference RF channel (402) is coupled to a difference channel output of the antenna system. An RF coupler (422-1) is provided that has a first input coupled to the sum RF channel and a second input coupled to the RF difference channel. One or more coupling control devices (418-1, 418-2) selectively vary an effective coupling value as between the difference channel and the sum channel. An antenna tracking error signal is generated at an output of the coupler.
Abstract:
A vibration tolerant electronic assembly may include a base and a first isolation stage including a first frame, at least one first linear bearing coupling the first frame to the base to constrain movement of the first frame along a first coordinate axis, and at least one first damper for damping movement of the first frame. A second similar isolation stage may be coupled to the first isolation stage, and a third similar isolation stage may be coupled to the second isolation stage. Furthermore, an electronic device may be coupled to the third isolation stage. The electronic assembly provides resistance to disturbance of the electronic device by vibration in one or more of three coordinate axis.
Abstract:
Interconnect feed devices (10) are provided for electrically connecting first and second electrical components (17, 21). The interconnect feed devices (10) can include a dielectric shell (23) with an electrically-conductive coating (40), and leads (22) positioned within individual conduits (30) of the shell. Each lead (22) and its associated conduit (30) can act as a coaxial cable for transmitting radio frequency (RF) energy between the first and second electrical components (17, 21). The shell (23) can be manufactured using a process, such as stereolithography, that allows the shell to be formed with relatively complicated geometries, which in turn can facilitate relatively complicated cable routing.
Abstract:
A circuit card clamp (300) including a base member (316), at least one first wedge member (446), and a thermally conductive membrane (350). The base member has an elongated shape configured for insertion in a circuit card chassis slot (106). The first wedge member is movable relative to the base member in response to a first actuator (304) for engaging the circuit card chassis slot. The thermally conductive membrane is coupled to the base member and the first wedge member. The thermally conductive membrane has slack for permitting the first wedge member to move relative to the base member between a first clamped position and a second unclamped position. The thermally conductive membrane defines a thermal conductive path (206) between a circuit card (104) and the chassis slot for releasably securing a circuit card in the circuit card chassis slot.
Abstract:
A metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments.
Abstract:
A method of manufacturing a cover structure is provided. A metal substrate disposed on a carrier is provided. The carrier has a surface, and the metal substrate has a plurality of openings exposing a portion of the surface. A first metal layer is formed on the metal substrate and is conformal with the metal substrate. The first metal layer covers the portion of the surface exposed by the openings. An insulating layer and a second metal layer located on the insulating layer are laminated on the metal substrate. The insulating layer is located between the first metal layer and the second metal layer to cover the first metal layer and fill the openings. The metal substrate and the carrier are removed to expose the first metal layer and define a plurality of cavity regions and a plurality of connecting regions connected with the cavity regions.
Abstract:
Interconnect feed devices (10) are provided for electrically connecting first and second electrical components (17, 21). The interconnect feed devices (10) can include a dielectric shell (23) with an electrically-conductive coating (40), and leads (22) positioned within individual conduits (30) of the shell. Each lead (22) and its associated conduit (30) can act as a coaxial cable for transmitting radio frequency (RF) energy between the first and second electrical components (17, 21). The shell (23) can be manufactured using a process, such as stereolithography, that allows the shell to be formed with relatively complicated geometries, which in turn can facilitate relatively complicated cable routing.
Abstract:
A circuit card clamp (300) including a base member (316), at least one first wedge member (446), and a thermally conductive membrane (350). The base member has an elongated shape configured for insertion in a circuit card chassis slot (106). The first wedge member is movable relative to the base member in response to a first actuator (304) for engaging the circuit card chassis slot. The thermally conductive membrane is coupled to the base member and the first wedge member. The thermally conductive membrane has slack for permitting the first wedge member to move relative to the base member between a first clamped position and a second unclamped position. The thermally conductive membrane defines a thermal conductive path (206) between a circuit card (104) and the chassis slot for releasably securing a circuit card in the circuit card chassis slot.
Abstract:
A method of manufacturing a cover structure is provided. A metal substrate disposed on a carrier is provided. The carrier has a surface, and the metal substrate has a plurality of openings exposing a portion of the surface. A first metal layer is formed on the metal substrate and is conformal with the metal substrate. The first metal layer covers the portion of the surface exposed by the openings. An insulating layer and a second metal layer located on the insulating layer are laminated on the metal substrate. The insulating layer is located between the first metal layer and the second metal layer to cover the first metal layer and fill the openings. The metal substrate and the carrier are removed to expose the first metal layer and define a plurality of cavity regions and a plurality of connecting regions connected with the cavity regions.