摘要:
Provided is a method for manufacturing an anode of a cable-type secondary battery having a solid electrolyte layer, including preparing an aqueous solution of an anode active material, making an anode by immersing a core as a current collector having a horizontal cross section of a predetermined shape and extending longitudinally in the aqueous solution, then applying an electric current to form a porous shell of the anode active material on the surface of the core, and forming a solid electrolyte layer on the surface of the anode by passing the anode through a solid electrolyte solution. The anode has a high contact area to increase the mobility of lithium ions, thereby improving battery performance. Also, the anode is capable of relieving stress and pressure in the battery, such as volume expansion during charging and discharging, thereby preventing battery deformation and ensuring battery stability.
摘要:
Provided is a method for manufacturing an anode of a cable-type secondary battery having a solid electrolyte layer, including preparing an aqueous solution of an anode active material, making an anode by immersing a core as a current collector having a horizontal cross section of a predetermined shape and extending longitudinally in the aqueous solution, then applying an electric current to form a porous shell of the anode active material on the surface of the core, and forming a solid electrolyte layer on the surface of the anode by passing the anode through a solid electrolyte solution. The anode has a high contact area to increase the mobility of lithium ions, thereby improving battery performance. Also, the anode is capable of relieving stress and pressure in the battery, such as volume expansion during charging and discharging, thereby preventing battery deformation and ensuring battery stability.
摘要:
Disclosed is a solid electrolyte for an electrochemical device. The solid electrolyte includes a composite consisting of: a plastic crystal matrix electrolyte doped with an ionic salt; and a network of a non-crosslinked polymer and a crosslinked polymer structure. The electrolyte has high ionic conductivity comparable to that of a liquid electrolyte due to the use of the plastic crystal, and high mechanical strength comparable to that of a solid electrolyte due to the introduction of the non-crosslinked polymer/crosslinked polymer structure network. Particularly, the electrolyte is highly flexible. Further disclosed is a method for preparing the electrolyte. The method does not essentially require the use of a solvent. Therefore, the electrolyte can be prepared in a simple manner. The electrolyte is suitable for use in a cable-type battery whose shape is easy to change due to its high ionic conductivity and high mechanical strength in terms of flexibility.
摘要:
Disclosed is a solid electrolyte for an electrochemical device. The solid electrolyte includes a composite consisting of: a plastic crystal matrix electrolyte doped with an ionic salt; and a network of a non-crosslinked polymer and a crosslinked polymer structure. The electrolyte has high ionic conductivity comparable to that of a liquid electrolyte due to the use of the plastic crystal, and high mechanical strength comparable to that of a solid electrolyte due to the introduction of the non-crosslinked polymer/crosslinked polymer structure network. Particularly, the electrolyte is highly flexible. Further disclosed is a method for preparing the electrolyte. The method does not essentially require the use of a solvent. Therefore, the electrolyte can be prepared in a simple manner. The electrolyte is suitable for use in a cable-type battery whose shape is easy to change due to its high ionic conductivity and high mechanical strength in terms of flexibility.
摘要:
Disclosed is an electrolyte for an electrochemical device. The electrolyte includes a composite of a plastic crystal matrix electrolyte doped with an ionic salt and a crosslinked polymer structure. The electrolyte has high ionic conductivity comparable to that of a liquid electrolyte due to the use of the plastic crystal, and high mechanical strength comparable to that of a solid electrolyte due to the introduction of the crosslinked polymer structure. Further disclosed is a method for preparing the electrolyte. The method does not essentially require the use of a solvent. Therefore, the electrolyte can be prepared in a simple manner by the method. The electrolyte is suitable for use in a cable-type battery whose shape is easy to change due to its high ionic conductivity and high mechanical strength.
摘要:
Disclosed is an electrolyte for an electrochemical device. The electrolyte includes a composite of a plastic crystal matrix electrolyte doped with an ionic salt and a crosslinked polymer structure. The electrolyte has high ionic conductivity comparable to that of a liquid electrolyte due to the use of the plastic crystal, and high mechanical strength comparable to that of a solid electrolyte due to the introduction of the crosslinked polymer structure. Further disclosed is a method for preparing the electrolyte. The method does not essentially require the use of a solvent. Therefore, the electrolyte can be prepared in a simple manner by the method. The electrolyte is suitable for use in a cable-type battery whose shape is easy to change due to its high ionic conductivity and high mechanical strength.
摘要:
Provided is an electrochemical device comprising two types of separators having different energy to break, wherein the outermost electrode layer of the electrode assembly includes an active material non-coated cathode, an active material non-coated anode, and a separator (second separator) disposed between the cathode and anode and having relatively low energy to break compared to that of separators (first separator) in other electrode layers. Therefore, it is possible to remarkably improve safety of the battery by inducing primary short-circuiting in the outermost electrode layer of a battery, thus facilitating heat dissipation of the battery, upon application of external impact.
摘要:
Disclosed is an electrode whose surface includes an organic/inorganic composite porous coating layer comprising heat-absorbing inorganic particles and a binder polymer, wherein the heat-absorbing inorganic particle is at least one particle selected from the group consisting of antimony-containing compounds, metal hydroxides, guanidine-based compounds, boron-containing compounds and zinc tartrate compounds. A separator using the heat-absorbing inorganic particles as a component for forming or coating the separator, and an electrochemical device including the electrode and/or the separator are also disclosed. The separator using the heat-absorbing inorganic particles as a component for forming or coating the separator can ensure excellent thermal safety and minimizes degradation of the quality of a battery.
摘要:
A separator includes a porous substrate having a plurality of pores; and a porous coating layer formed on at least one surface of the porous substrate and made of a mixture of a plurality of inorganic particles and a binder polymer, wherein the binder polymer includes a first polyvinylidene fluoride-based copolymer having solubility of 25 weight % or more with respect to acetone at 350 C; a second polyvinylidene fluoride-based copolymer having solubility of 10 weight % or less with respect to acetone at 350 C; and a polymer having a cyano group. This separator decelerates deterioration of life span of an electrochemical device, and prevents disintercalation of inorganic particles in the porous coating layer, thereby improving safety of the electrochemical device.