摘要:
Nonvolatile memory devices include a string of nonvolatile memory cells on a substrate. This string of nonvolatile memory cells includes a first vertical stack of nonvolatile memory cells on the substrate and a string selection transistor on the first vertical stack of nonvolatile memory cells. A second vertical stack of nonvolatile memory cells is also provided on the substrate and a ground selection transistor is provided on the second vertical stack of nonvolatile memory cells. This second vertical stack of nonvolatile memory cells is provided adjacent the first vertical stack of nonvolatile memory cells. A conjunction doped semiconductor region is provided in the substrate. This conjunction doped region electrically connects the first vertical stack of nonvolatile memory cells in series with the second vertical stack of nonvolatile memory cells so that these stacks can operate as a single NAND-type string of memory cells.
摘要:
Methods of forming nonvolatile memory devices include forming a vertical stack of nonvolatile memory cells on a substrate. This is done by forming a vertical stack of spaced-apart gate electrodes on a first sidewall of a vertical silicon active layer and treating a second sidewall of the vertical silicon active layer in order to reduce crystalline defects within the active layer and/or reduce interface trap densities therein. This treating can include exposing the second sidewall with an oxidizing species that converts a surface of the second sidewall into a silicon dioxide passivation layer. A buried insulating pattern may also be formed directly on the silicon dioxide passivation layer.
摘要:
Nonvolatile memory devices include a string of nonvolatile memory cells on a substrate. This string of nonvolatile memory cells includes a first vertical stack of nonvolatile memory cells on the substrate and a string selection transistor on the first vertical stack of nonvolatile memory cells. A second vertical stack of nonvolatile memory cells is also provided on the substrate and a ground selection transistor is provided on the second vertical stack of nonvolatile memory cells. This second vertical stack of nonvolatile memory cells is provided adjacent the first vertical stack of nonvolatile memory cells. A conjunction doped semiconductor region is provided in the substrate. This conjunction doped region electrically connects the first vertical stack of nonvolatile memory cells in series with the second vertical stack of nonvolatile memory cells so that these stacks can operate as a single NAND-type string of memory cells.
摘要:
Methods of forming nonvolatile memory devices include forming a vertical stack of nonvolatile memory cells on a substrate. This is done by forming a vertical stack of spaced-apart gate electrodes on a first sidewall of a vertical silicon active layer and treating a second sidewall of the vertical silicon active layer in order to reduce crystalline defects within the active layer and/or reduce interface trap densities therein. This treating can include exposing the second sidewall with an oxidizing species that converts a surface of the second sidewall into a silicon dioxide passivation layer. A buried insulating pattern may also be formed directly on the silicon dioxide passivation layer.
摘要:
Nonvolatile memory devices include a string of nonvolatile memory cells on a substrate. This string of nonvolatile memory cells includes a first vertical stack of nonvolatile memory cells on the substrate and a string selection transistor on the first vertical stack of nonvolatile memory cells. A second vertical stack of nonvolatile memory cells is also provided on the substrate and a ground selection transistor is provided on the second vertical stack of nonvolatile memory cells. This second vertical stack of nonvolatile memory cells is provided adjacent the first vertical stack of nonvolatile memory cells. A conjunction doped semiconductor region is provided in the substrate. This conjunction doped region electrically connects the first vertical stack of nonvolatile memory cells in series with the second vertical stack of nonvolatile memory cells so that these stacks can operate as a single NAND-type string of memory cells.
摘要:
In semiconductor devices and methods of manufacture, a semiconductor device comprises a substrate of semiconductor material extending in a horizontal direction. A plurality of interlayer dielectric layers are on the substrate. A plurality of gate patterns are provided, each gate pattern between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of semiconductor material is on the substrate and extending in a vertical direction through the plurality of interlayer dielectric layers and the plurality of gate patterns. The vertical channel has an outer sidewall, the outer sidewall having a plurality of channel recesses, each channel recess corresponding to a gate pattern of the plurality of gate patterns. The vertical channel has an inner sidewall. An information storage layer is present in the recess between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel.
摘要:
In semiconductor devices and methods of manufacture, a semiconductor device comprises a substrate of semiconductor material extending in a horizontal direction. A plurality of interlayer dielectric layers are on the substrate. A plurality of gate patterns are provided, each gate pattern between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of semiconductor material is on the substrate and extending in a vertical direction through the plurality of interlayer dielectric layers and the plurality of gate patterns. The vertical channel has an outer sidewall, the outer sidewall having a plurality of channel recesses, each channel recess corresponding to a gate pattern of the plurality of gate patterns. The vertical channel has an inner sidewall. An information storage layer is present in the recess between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel.
摘要:
Memory devices include a stack of interleaved conductive patterns and insulating patterns disposed on a substrate. A semiconductor pattern passes through the stack of conductive patterns and insulating patterns to contact the substrate, the semiconductor pattern having a graded grain size distribution wherein a mean grain size in a first portion of the semiconductor pattern proximate the substrate is less than a mean grain size in a second portion of the semiconductor pattern further removed from the substrate. The graded grain size distribution may be achieved, for example, by partial laser annealing.
摘要:
Methods for fabricating a semiconductor device are provided. In the methods, first material layers and second material layers may be alternatingly and repeatedly stacked on a substrate. An opening penetrating the first material layers and the second material layers may be formed. A semiconductor solution may be formed in the opening by using a spin-on process.
摘要:
Semiconductor devices and methods of forming the same may be provided. The semiconductor devices may include gate patterns and insulation patterns repeatedly and alternatingly stacked on a substrate. The semiconductor devices may also include a through region penetrating the gate patterns and the insulation patterns. The semiconductor devices may further include a channel structure extending from the substrate through the through region. The channel structure may include a first channel pattern having a first shape. The first channel pattern may include a first semiconductor region on a sidewall of a portion of the through region, and a buried pattern dividing the first semiconductor region. The channel structure may also include a second channel pattern having a second shape. The second channel pattern may include a second semiconductor region in the through region. A grain size of the second semiconductor region may be larger than that of the first semiconductor region.