摘要:
A vapor compression refrigerator having a refrigeration cycle (200) is disclosed. In a Rankine cycle (300), a refrigerant is circulated through a pump (310), a heater (320), an expander (330) and a condenser (220) in that order, and power is recovered by the expander 330 due to the expansion of the refrigerant from the heater (320). In a host gas cycle (500), on the other hand, the inlet of the compressor (210) can be connected from a point between the pump (310) and the heater (320) by a switching path (510) having a first restricting portion (510), the refrigerant is circulated by the compressor (210) through the heater (320) and the switching path (510) in that order, and the heater (320) exhibits the function of heating a heat generating device (10).
摘要:
A vapor compression refrigerator having a refrigeration cycle (200) is disclosed. In a Rankine cycle (300), a refrigerant is circulated through a pump (310), a heater (320), an expander (330) and a condenser (220) in that order, and power is recovered by the expander 330 due to the expansion of the refrigerant from the heater (320). In a host gas cycle (500), on the other hand, the inlet of the compressor (210) can be connected from a point between the pump (310) and the heater (320) by a switching path (510) having a first restricting portion (510), the refrigerant is circulated by the compressor (210) through the heater (320) and the switching path (510) in that order, and the heater (320) exhibits the function of heating a heat generating device (10).
摘要:
Provided is an air-blowing-type road surface snow-melting system which makes it possible to reduce the height of a hollow roadbed body while also making the amount of air blown out from an air-permeable structure substantially uniform. An air-blowing-type road surface snow-melting system (1) comprises: a hollow roadbed body (2) which is provided with a hollow section (21) and is buried beneath a road surface; an air-permeable structure (3) which is disposed on the hollow roadbed body (2) to form the road surface; and a vent pipe (4) which is laid inside the hollow section (21) of the hollow roadbed body (2), wherein the vent pipe (4) is laid in the shape of a loop so as to enclose a predetermined snow-melting area and in addition a plurality of blow-out sections (42) which open toward the inside of the loop are disposed in the vent pipe (4).
摘要:
A subcool condenser having a condensation heat exchange portion, a receive portion and a supercool heat exchange portion is used as an outdoor heat exchanger that functions as a radiator in a cooling operation mode so that COP in the cooling operation mode is increased. In contrast, in a heating operation mode, a refrigerant bypass device that causes the refrigerant to flow so as to bypass the supercool heat exchange portion is provided so that pressure loss generated in the refrigerant flowing through the outdoor heat exchanger is decreased. Thereby, driving force of a compressor can be decreased and COP in the heating operation mode can be improved.
摘要:
A two-stage decompression ejector includes a variable throttle mechanism having a first throttle passage for decompressing a fluid and a valve body for changing a throttle passage area of the first throttle passage, a nozzle having therein a second throttle passage for further decompressing the fluid decompressed by the variable throttle mechanism, and a suction portion for drawing a fluid by a suction effect of a high-velocity jet fluid from the nozzle. The formula of 0.07≦Vo×S/vn≦0.7 is satisfied, in which Vo is an intermediate-pressure space volume (mm3) from an outlet of the variable throttle mechanism to an inlet of the second throttle passage, S is a throttle passage sectional area (mm2) of a minimum passage sectional area portion of the second throttle passage, and vn is a flow velocity (mm/s) of the fluid passing through the minimum passage sectional area portion.
摘要:
An integrated unit for a refrigerant cycle device includes an ejector having a nozzle part for decompressing refrigerant, and an evaporator located to evaporate the refrigerant to be drawn into a refrigerant suction port of the ejector or the refrigerant discharged from an outlet of the ejector. The evaporator includes a plurality of tubes defining refrigerant passages through which refrigerant flows, a tank that is disposed at one end side of the tubes for distributing refrigerant into the tubes and for collecting the refrigerant from the tubes. The tank extends in a tank longitudinal direction that is parallel to an arrangement direction of the tubes, and is provided with an end portion in the tank longitudinal direction. Furthermore, the end portion has a hole portion for inserting the ejector, and the ejector is inserted into an inner space of the tank from the hole portion.
摘要:
In a refrigerant cycle device, a radiator has a heat radiating portion for radiating high-pressure refrigerant discharged from a compressor and a refrigerant outlet downstream from the heat radiating portion, an ejector includes a nozzle portion for decompressing and expanding refrigerant and a refrigerant suction port for sucking refrigerant by high-velocity refrigerant flow jetted from the nozzle portion. The refrigerant cycle device includes a throttle unit for decompressing refrigerant flowing out of the refrigerant outlet of the radiator, an evaporator located between a refrigerant downstream side of the throttle unit and the refrigerant suction port of the ejector, and a branch portion located within the heat radiating portion of the radiator to branch a refrigerant flow. In the refrigerant cycle device, the nozzle portion has a nozzle inlet coupled to the branch portion so that refrigerant flows into the nozzle inlet from the branch portion of the radiator.
摘要:
A subcool condenser having a condensation heat exchange portion, a receive portion and a supercool heat exchange portion is used as an outdoor heat exchanger that functions as a radiator in a cooling operation mode so that COP in the cooling operation mode is increased. In contrast, in a heating operation mode, a refrigerant bypass device that causes the refrigerant to flow so as to bypass the supercool heat exchange portion is provided so that pressure loss generated in the refrigerant flowing through the outdoor heat exchanger is decreased. Thereby, driving force of a compressor can be decreased and COP in the heating operation mode can be improved.
摘要:
An ejector-type air-conditioning and refrigerating system according to the present invention is mounted on an automotive vehicle. The system includes a first evaporator for cooling a passenger compartment and a second evaporator for cooling a refrigerator mounted on the vehicle. Refrigerant is supplied to the first evaporator through an ejector, while the refrigerant is supplied to the second evaporator through a restrictor disposed in a branch passage. Refrigerant evaporated in the second evaporator is sucked by a sucking portion provided in the ejector through a sucking passage. A noise dissipater for suppressing noises caused by pulsating vibrations generated in the ejector is disposed in the sucking passage at a position close to the sucking portion of the ejector. The noise dissipater is postured in the sucking passage so that liquid components in the refrigerant including oil contained in the refrigerant are prevented from being retained in the dissipater.
摘要:
An image forming apparatus in which the consumption article can be attached to and detached from a main body has a controller, which reads first new/old information that is stored in a repetitively rewritable area of a memory provided on the consumption article and represents whether or not the consumption article is unused after manufacturing or after recycling and second new/old information that is stored in a once rewritable area of the memory and represents the number of times of recycling of the consumption article and controls the operation of the image forming apparatus on the basis of the first new/old information and the second new/old information.