摘要:
An in-plane-switching liquid crystal display unit has a two-dimensional matrix of pixel regions each including a first auxiliary region and a second auxiliary region. When no electric field is applied, liquid crystal molecules in the first and second auxiliary regions are directed in respective orientations that lie at 90° with respect to each other. When a voltage is applied, the liquid crystal molecules are rotated in the same direction while maintaining their orientations in the first and second auxiliary regions at 90° with respect to each other. Alternatively, the liquid crystal molecules in the first and second auxiliary regions are directed in the same orientation when no electric field is applied, and when a voltage is applied, the liquid crystal molecules are rotated 15 opposite directions while maintaining their orientations in symmetric relationship.
摘要:
After a fluid film is formed by supplying a material with fluidity to the surface of a substrate formed with a stepped layer, the fluid film is pressed against the substrate by a pressing member having a planar pressing surface so that the surface of the fluid film is planarized. The fluid film is heated in this state and thereby solidified to form a solidified film having a planar surface.
摘要:
An in-plane-switching liquid crystal display unit has a two-dimensional matrix of pixel regions each including a first auxiliary region and a second auxiliary region. When no electric field is applied, liquid crystal molecules in the first and second auxiliary regions are directed in respective orientations that lie at 90° with respect to each other. When a voltage is applied, the liquid crystal molecules are rotated in the same direction while maintaining their orientations in the first and second auxiliary regions at 90° with respect to each other. Alternatively, the liquid crystal molecules in the first and second auxiliary regions are directed in the same orientation when no electric field is applied, and when a voltage is applied, the liquid crystal molecules are rotated 15 opposite directions while maintaining their orientations in symmetric relationship.
摘要:
In an orientation division type liquid crystal display device for widen a viewing angle of a display pixel of an active matrix type liquid crystal color display device having a COT structure, pixel color layers (6B, 6R, 6G) as color filters and pixel electrodes 3 are formed on a substrate on the side of the pixel electrodes and slopes 13 are provided along four side peripheries of each pixel electrode. Liquid crystal molecules 8 between each pixel electrode of the pixel electrode substrate and a common electrode of an opposing substrate are controlled in orientation direction along the slopes to divide it to a plurality of directions to thereby widen a viewing angle of a pixel display. The slope is formed on a step portion 12 formed by a BM layer formed on at least one of a gate electrode, a drain electrode and a source electrode formed in a periphery of the pixel electrode or at least one of a gate wiring and a drain wiring formed in the periphery or a step portion formed by partially overlapping peripheral portions of the adjacent pixel color layers.
摘要:
A liquid crystal display apparatus includes a first substrate, a second substrate and a liquid crystal layer interposed between the first substrate and the second substrate. The first substrate includes on a surface facing the second substrate, a plurality of gate bus lines extending into a row direction, a plurality of drain bus lines extending into a column direction, and a plurality of pixels arranged in matrix. Each of the plurality of pixels includes a portion of one of the plurality of gate bus lines associated with the pixel, a portion of one of the plurality of drain bus lines associated with the pixel, a portion of a capacitance line associated with the pixel, a pixel transistor having a source and a drain which is connected with the associated drain bus line, a control electrode connected with the source and formed in at least a portion of a region of the pixel, and a the pixel electrode which is in an electrically floating state and which is formed to cover the control electrode and a portion of the capacitance line through at least one of a first insulating film and second insulating film.
摘要:
A liquid crystal display device can suppress pixel-based gradation fluctuations observed upon change in angle of view with increased size as it meets wide angle of view characteristics required of a large-sized liquid crystal display device. A device in which a liquid crystal material is sealed between a pair of substrates 31, 32, a plurality of pixel electrodes 38 for applying voltage across the liquid crystal material is arranged on the substrate 31, a common electrode 12 for applying a voltage common to the pixel electrodes 38 is arranged on the substrate 32, and in which a gate line 22 and a drain line 23 of a switching element adapted to control the voltage applied across the pixel electrodes 38 are provided for extending substantially at right angles to each other. In the device, orientation of the liquid crystal molecules 18 neighboring to the pixel electrode 38 is perpendicular to that of liquid crystal molecules 19 neighboring to the common electrode 12, while the respective orientations are substantially parallel to the direction of the gate line 22 or that of the drain line 23.
摘要:
A liquid crystal display device comprises shield means for shielding an electric field generated from a data line. For example, a common electrode is used as the shielding means in an IPS (In-Plane Switching) rode in which an electric field is applied in a direction respecting parallel to the substrates. Specifically, the common electrode is provided closer to the liquid crystal layer than the data line so that the common electrode covers the data line. As a result, the leak electric field from the data line is shielded by the common electrode. Therefore, the leak electric field does not adversely influence a liquid crystal layer. Consequently, the light shield area for the data line is unnecessary. This increases the aperture ratio.
摘要:
The method for forming a semiconductor microstructure of this invention includes the steps of: forming a mask pattern having a first opening and a second opening on a substrate having a semiconductor layer as an upper portion thereof; and selectively etching the semiconductor layer using the mask pattern to form a semiconductor microstructure extending in a first direction parallel to a surface of the substrate, wherein, in the step of selectively etching the semiconductor layer, an etching rate in a second direction vertical to the first direction and parallel to the surface of the substrate is substantially zero with respect to an etching rate in the first direction, and a width of the semiconductor microstructure is substantially equal to a shortest distance between the first opening and the second opening in the second direction.
摘要:
By etching, a first groove and a second groove are formed in a silicon substrate. Surfaces of the side walls of these grooves have a surface orientation of (111). The first and second grooves sandwich a silicon thin plate therebetween, which is formed as a part of the silicon substrate. The silicon thin plate is sufficiently thin so as to act as a quantum well. Further, a pair of silicon oxide films acting as tunneling barriers are formed on the surfaces of the side walls of the silicon thin plate, thus forming a double barrier structure. In addition, a pair of polysilicon electrodes are formed and sandwich the double barrier structure. As a result, the structure of a resonance tunneling diode, which utilizes the resonance tunneling effect, is provided. Adding a third electrode to the above structure provides a hot electron transistor. In the quantization functional devices having the above-described configuration, the satisfactory resonance effect is obtained due to a high crystallinity of the quantum well, a high potential barrier brought by the high quality silicon oxide films used as the tunneling barriers and a smooth interface between the quantum well and the tunneling barriers.
摘要:
By etching, a first groove and a second groove are formed in a silicon substrate. Surfaces of the side walls of these grooves have a surface orientation of (111). The first and second grooves sandwich a silicon thin plate therebetween, which is formed as a part of the silicon substrate. The silicon thin plate is sufficiently thin so as to act as a quantum well. Further, a pair of silicon oxide films acting as tunneling barriers are formed on the surfaces of the side walls of the silicon thin plate, thus forming a double barrier structure. In addition, a pair of polysilicon electrodes are formed and sandwich the double barrier structure. As a result, the structure of a resonance tunneling diode, which utilizes the resonance tunneling effect, is provided. Adding a third electrode to the above structure provides a hot electron transistor. In the quantization functional devices having the above-described configuration, the satisfactory resonance effect is obtained due to a high crystallinity of the quantum well, a high potential barrier brought by the high quality silicon oxide films used as the tunneling barriers and a smooth interface between the quantum well and the tunneling barriers.