Abstract:
To provide a method for determining a component pickup order used by a component mounting apparatus which has plural mounting heads, and which causes the mounting heads to alternately pick up components from a component supplying unit and mount the components onto boards. The component pickup order determining method includes pickup order determining steps (S2 and S4) of determining an order according to which the plural mounting heads pick up components from the component supplying unit, so that some of the components corresponding to two or more tasks do not remain in any one of restricted areas where one of the mounting heads cannot pick up any components, when the component supplying unit includes the restricted areas and a task is referred to as at least one of components which is mounted in one of repeatedly executed operation sequences each of which includes suctioning, moving and mounting of the components executed by the mounting heads.
Abstract:
To provide a method for determining a component pickup order used by a component mounting apparatus which has plural mounting heads, and which causes the mounting heads to alternately pick up components from a component supplying unit and mount the components onto boards. The component pickup order determining method includes pickup order determining steps (S2 and S4) of determining an order according to which the plural mounting heads pick up components from the component supplying unit, so that some of the components corresponding to two or more tasks do not remain in any one of restricted areas where one of the mounting heads cannot pick up any components, when the component supplying unit includes the restricted areas and a task is referred to as at least one of components which is mounted in one of repeatedly executed operation sequences each of which includes suctioning, moving and mounting of the components executed by the mounting heads.
Abstract:
A broadcast system BS includes a broadcast apparatus 1 and a reception apparatus 2. The broadcast apparatus 1 first receives and stores therein a proxy request PR including at least an identifier assigned to the reception apparatus 2 and a command to be transmitted to the reception apparatus 2. Moreover, the broadcast apparatus 1 extracts the set of the identifier of the reception apparatus 2 and the command for the reception apparatus 2 from the proxy request PR stored therein, and assembles a command packet from the set of the identifier and the command. Then, the broadcast apparatus 1 generates a stream in which the assembled command packet is multiplexed, and sends it out to a broadcast channel. The reception apparatus 2 separates the command packet from the stream sent out to the broadcast channel, and restores the set of the identifier and the command of the reception apparatus 2. Then, the reception apparatus 2 determines whether or not the disassembled command is destined for the present reception apparatus based on the pre-stored identifier of the present reception apparatus and the disassembled identifier of the reception apparatus 2. If so, the reception apparatus 2 stores therein the command destined for the present reception apparatus. The reception apparatus 2 executes the command, which has bee stored as described above.
Abstract:
A broadcast system BS includes a broadcast apparatus 1 and a reception apparatus 2. The broadcast apparatus 1 first receives and stores therein a proxy request PR including at least an identifier assigned to the reception apparatus 2 and a command to be transmitted to the reception apparatus 2. Moreover, the broadcast apparatus 1 extracts the set of the identifier of the reception apparatus 2 and the command for the reception apparatus 2 from the proxy request PR stored therein, and assembles a command packet from the set of the identifier and the command. Then, the broadcast apparatus 1 generates a stream in which the assembled command packet is multiplexed, and sends it out to a broadcast channel. The reception apparatus 2 separates the command packet from the stream sent out to the broadcast channel, and restores the set of the identifier and the command of the reception apparatus 2. Then, the reception apparatus 2 determines whether or not the disassembled command is destined for the present reception apparatus based on the pre-stored identifier of the present reception apparatus and the disassembled identifier of the reception apparatus 2. If so, the reception apparatus 2 stores therein the command destined for the present reception apparatus. The reception apparatus 2 executes the command, which has bee stored as described above.
Abstract:
A parts mounter including a unit for supplying a part, circuit board supporting means for fastening a circuit board when mounting a part, parts mounting means including a mechanism loaded with a suction nozzle and for vertically moving the suction nozzle when sucking and holding a part, and for positioning the suction nozzle at any position, and nozzle exchanging means including a mechanism for removing and installing a requested suction nozzle from and to the parts mounting means. The parts mounting means further includes a nozzle existence checking sensor for performing detection of conditions of a suction nozzle loaded to the parts mounting means.
Abstract:
The behavior of a nozzle tip is measured with a jig when the suction nozzle moves vertically and rotatively before the start of production. The nozzle tip displacement is formulated from the results with a component thickness and a mounting angle used as parameters, and the parameters are corrected according to the component thickness and the final mounting angle of the electronic component to be mounted in the production stage.
Abstract:
A mounter including at least two mounting stages 109 and 110 where components are mounted onto boards transported from the upstream side in transportation direction of the board 120 and then transport the boards to the downstream side, and the mounter includes a first stopping unit 135 for stopping the board to place a board edge on the downstream side on a first fixed position which is in the downstream side from a first mountable area A, the first mountable area A being a mountable region where the components can be mounted on the first mounting stage 109 on the upstream side, and a second stopping unit 136 for stopping the board to place a board edge on the upstream side on a second fixed position which is the upstream side from a second mountable area A, the second mountable area A being a mountable region where the components can be mounted on the second mounting stage 110.
Abstract:
When a program transmission apparatus divides a program into a plurality of partial programs before transmission, a program reception execution apparatus executes a partial program when the partial program has already been received, and, when the execution needs to proceed to from a present partial program to a next partial program, executes the other partial program when the next partial program has been received.
Abstract:
When a program transmission apparatus divides a program into a plurality of partial programs before transmission, a program reception execution apparatus executes a partial program when the partial program has already been received, and, when the execution needs to proceed to from a present partial program to a next partial program, executes the other partial program when the next partial program has been received.
Abstract:
An electronic component mounting method for sucking up an electronic component and placing it onto a board with a suction nozzle, includes a step of switching over air pressure switching timings for the suction nozzle when the component is sucked with the suction nozzle and when the sucked component is mounted on the board according to a velocity of up and down movement of the suction nozzle and independently for each of when the component is sucked with the suction nozzle and when the sucked component is mounted on the board. An electronic component mounting apparatus includes a suction nozzle for sucking an electronic component and placing it onto a board, a device for moving up and down the suction nozzle for suction and mounting of the electronic component, an air pressure switching unit for switching air pressure to the suction nozzle at an electronic component suction position and an electronic component mounting position, and a switching drive unit for performing switching control of the air pressure switching unit independently for each of when the component is sucked with the suction nozzle and when the sucked component is mounted on the board.