摘要:
An optical receiver includes a PIN photodiode (PIN-PD) having an incident surface for receiving signal light, the PIN-PD transmitting a part of the signal light to the surface opposite to the incident surface, and an avalanche photodiode (APD) having an incident surface for receiving light transmitted through the PIN-PD. In the optical receiver, the ratio of the quantity of signal light detected by the PIN-PD and the ratio of the quantity of signal light detected by the APD are not affected by the polarization state of the signal light incident on the optical receiver, and accordingly the avalanche multiplication factor of the APD is suitably controlled on the basis of the signal light detected by the PIN-PD.
摘要:
The present invention provides an optical receptacle having a superior insertion/extraction performance of the ferrule, and an optical sub-assembly applying the optical receptacle. The optical receptacle 1 includes a stub, a bush 4, a sleeve, and a sleeve cover. The stub having a lower portion covered by the bush, and an upper portion covered by the sleeve. The sleeve may be a rigid sleeve without any slit along the optical axis in its outer surface. The sleeve cover covers the sleeve and the bush. In the present optical receptacle, the bush is press-fitted into the gap formed between the stub and the sleeve cover. Accordingly, in addition to the application of the rigid sleeve, not only the sub is hard to slide out from the sleeve, but also the insertion/extraction performance of the ferrule to be inserted into the sleeve may be enhanced.
摘要:
An optical transmission and receiver module suitable for a single-fiber bi-directional communication includes a light emitting device, a photodiode, an optical path routing element which allows light emitted from the light emitting device and light directed to the photodiode to pass through the element and which changes their optical paths, as required, and a lens transparent to both light emitted from light emitting device and light directed to the photodiode.
摘要:
A jointing holder for an optical module for single-fiber bidirectional communication comprises a unitarily structured cylindrical body that has the following portions: (a) an optical fiber-fixing portion for securely holding an optical fiber for transmitting multiwavelength light bidirectionally, (b) a semiconductor laser-fixing portion for securely holding a semiconductor laser for emitting outgoing light λ1, (c) a photodiode-fixing portion for securely holding a photodiode for receiving incoming light λ2, (d) an optical path-forming space for optically coupling the optical fiber, the semiconductor laser, and the photodiode, and (e) in the optical path-forming space, an optical filter-fixing face for securely holding an optical filter for separating multiplexed wavelengths. The jointing holder enables the optical module to reduce the number of components, to be miniaturized, and to reduce the dimensional deviation at the time of the assembly, enabling high-precision assembly. An optical module for single-fiber bidirectional communication incorporates the jointing holder.
摘要:
250 μm is the standardized pitch H of the prevalent multichannel ribbonfibers. Current laser diodes and photodiodes have a size larger than 300 μm. Curving lightpaths made on a silicon bench for reconciling the chip size with current ribbonfibers causes bending power loss, optical crosstalk and difficulty of production. Linear parallel lightpaths with a width d for more than one chip site are produced on a bench with a pitch E which is equal to the pitch H of the multichannels. Optoelectronic device chips with a width W satisfying an inequality E
摘要:
An optical communication device including optoelectronic (LD, PD, LD/PD) elements allocated to a top surface of a circuit board and electronic, electric elements (IC, R/C) allocated to a bottom surface and to the top surface of the circuit board.
摘要:
An optical module comprising a column-shaped mounting member having a through hole extending along the central axis thereof and having a mounting surface formed by incising a part of the mounting member so as to expose the interior surface of the through hole; and an optical fiber inserted in the through hole and secured in a configuration such that the optical fiber protrudes with a specified length onto the mounting surface. The structure, in which a Bragg diffraction grating is formed in such protruding part of the optical fiber on said mounting surface, can prevent the occurrence of a change in reflective characteristic of the Bragg diffraction grating.
摘要:
In optical module 1a, substrate 3 has first and second regions 3a, 3b and first and second optical waveguides 3c, 3d. First and second regions 3a, 3b are arranged along a predetermined plane. First and second optical waveguides 3d, are provided in the first region 3a and extend in a direction of a predetermined axis. Semiconductor light emitting device 7 includes a semiconductor light emitting element 7a optically coupled to first optical waveguide 3c and provided in second region 3e. Semiconductor driving element 9 is electrically connected to semiconductor light emitting element 7a. Semiconductor driving element 9 is mounted on mount member 13. Optical element 15a reflects a part of incident light and transmits a part of the incident light, and semiconductor light receiving device 17 includes a light receiving element 17a provided in first region 3a so as to be optically coupled to optical element 15a.
摘要:
Disclosed is a photodiode array which includes a plurality of p-i-n photodiodes arrayed on a semi-insulative semiconductor substrate, each photodiode including an n-type semiconductor layer grown on the substrate, an i-type semiconductor layer grown on the n-type semiconductor layer, a p-type semiconductor layer grown on the i-type semiconductor layer, an n-type electrode provided on the n-type semiconductor layer in a region exposed by partially removing the p-type semiconductor layer and the i-type semiconductor layer, and a p-type electrode provided on the p-type semiconductor layer. A trench is provided between the two adjacent photodiodes by partially removing the p-type semiconductor layer, the i-type semiconductor layer, and the n-type semiconductor layer. Consequently, the size and pitch of the photodiodes can be decreased and crosstalk between the photodiodes can be reduced. Also disclosed is an optical receiver device including the photodiode array.
摘要:
An optical data link includes a circuit board and an optical module component. The circuit board includes first and second mounting sections on a principal plane thereof. A step is formed between the first mounting section and the second mounting section. The first mounting section has the optical module component, and the second mounting section has an electron device. The optical module component includes a mounting component, a semiconductor optical device, and an optical transmission medium. The semiconductor optical device of the optical module component is electrically connected to the electron device, and is mounted on a first region of the mounting component. The optical transmission medium is supported by a second region of the mounting component, and is optically coupled with the semiconductor optical device.