摘要:
Temperatures in a Dr side air-conditioning zone and a Pa side air-conditioning zone are controlled highly independently of each other without temperature interference between each zone. A room internal air temperature sensor and a room external air temperature sensor are provided. Dr side and Pa side temperature setters separately set room setpoint temperatures (Tset(Dr), Tset(Pa)) in each zone. First and second target blow-out temperature calculating portions, which include neural network, input the room setpoint temperatures and the temperature data. Then it calculates Dr side and Pa side target blow-out temperatures (TAO(Dr), TAO(Pa)) relative to each air-conditioning zones by using a neural network. Air-mixing doors separately adjusts the temperatures of conditioned air blown out from Dr side air passage and Pa side air passage to be the first and second target blow-out temperatures. Here, the neural network has the learning function, which adjusts its output to be desired data (teacher signal). Therefore, the output at a specific input condition can be adjusted without temperature interference between each zone.
摘要:
A vehicle air conditioning apparatus in which the larger the air conditioning cooling load in a vehicle compartment, for example, the larger the solar radiation amount, the lower the set temperature or the larger the temperature deviation between set temperature and inner air temperature, the narrower the swing ranges of swing louvers of respective center and side FACE blow outlets are set. Regardless of the swing range of the swing louvers, swing cycles of the swing louvers are set constant, and the narrower the swing ranges of the swing louvers, the slower the swing speeds of the swing louvers are set. Therefore, annoying feeling is reduced, and comfortable feeling for passengers is significantly improved.
摘要:
Temperatures in a Dr side air-conditioning zone and a Pa side air-conditioning zone are controlled highly independently of each other without temperature interference between each zone. A room internal air temperature sensor and a room external air temperature sensor are provided. Dr side and Pa side temperature setters separately set room setpoint temperatures (Tset(Dr), Tset(Pa)) in each zone. First and second target blow-out temperature calculating portions, which include neural network, input the room setpoint temperatures and the temperature data. Then it calculates Dr side and Pa side target blow-out temperatures (TAO(Dr), TAO(Pa)) relative to each air-conditioning zones by using a neural network. Air-mixing doors separately adjusts the temperatures of conditioned air blown out from Dr side air passage and Pa side air passage to be the first and second target blow-out temperatures. Here, the neural network has the learning function, which adjusts its output to be desired data (teacher signal). Therefore, the output at a specific input condition can be adjusted without temperature interference between each zone.
摘要:
A detecting device for a vehicle includes an inside air temperature sensor for an air conditioning system. The air conditioning system includes an air duct having a horizontal duct, and the horizontal duct is disposed in a receiving passage of a ceiling of the vehicle. The horizontal duct includes a connection duct portion having a U-shaped bottom wall portion. The inside air temperature sensor is disposed in the U-shaped bottom wall portion at a position proximate to an opening portion of an inner wall of a passenger compartment of the vehicle, and a suction cover is attached to the opening portion of the inner wall of the passenger compartment. Thus, the inside air temperature sensor accurately detects a temperature of inside air in the passenger compartment without being affected by an amount of sunlight entering the passenger compartment or the other conditions.
摘要:
An air conditioner for a vehicle includes a vapor compression refrigeration cycle switchable between a heat pump cycle and a cooler cycle, a heat core configured to heat air to be blown into a vehicle compartment by using coolant of an engine of the vehicle as a heat source, and a controller configured to control operation of the vapor compression refrigeration cycle. The controller controls the vapor compression refrigeration cycle to be operated as the cooler cycle so as to perform a defrosting control of the outdoor heat exchanger, and outputs an operation request signal to the engine, when the controller determines that the outdoor heat exchanger is frosted.
摘要:
An air-conditioning device for a vehicle includes a blower and an estimating portion. The blower is disposed in an air-conditioning case, and performs a dry control for a heat exchanger arranged in a passenger compartment of the vehicle by sending air. The blower uses one of power supplied from an external power source, power supplied from the battery having residual quantity equal to or larger than a predetermined quantity, or power supplied from an in-vehicle solar cell, while the vehicle is parked. The estimating portion estimates an approximate elimination of odor generated from the heat exchanger by starting the sending of air, and stops the blower based on the estimation.
摘要:
In a vehicle air conditioner with an automatic control having a learning function of manual operation, when a passenger manually sets an air blowing amount in the automatic control, it is determined whether or not an air blowing amount after the manual operation is in a readily sensible area. When a change of the air amount due to the manual operation is in the readily sensible area, a reflecting degree of the manual operation reflected in an air amount control pattern is increased. For example, 100% of the manual operation is reflected in the air amount control pattern in the readily sensible area, while about tens % of manual operations is generally reflected in the air amount control pattern totally.
摘要:
An air conditioner for a vehicle includes a blower; a heat exchanger that heats the blown air by heat exchanger between blown air and a heat medium, a control device, and an air outlet mode switching device that switches between air outlet modes by switching proportions of air flow blown out from outlets which includes a face air outlet and a foot air outlet, wherein the control device limits the availability factor of the blower based on a temperature of the heat medium; and relaxes limitation on the availability factor of the blower when the air outlet mode is a bi-level mode in which the blown air is blown out from both of the face air outlet and the foot air outlet.
摘要:
A cooling system of a battery which efficiently cools a high voltage battery which is mounted in an electric vehicle or a hybrid vehicle so as to maintain battery performance by using a refrigeration cycle of an air-conditioning system, which is provided with an electric compressor, outside heat exchanger, inside heat exchanger, and a control device. A refrigerant path of the air-conditioning system for running refrigerant is provided with a branch path having a heat exchanger which bypasses the inside heat exchanger, a medium path connected to the heat exchanger runs another refrigerant for cooling the battery, control valves are provided which adjust the amounts of the refrigerant which flows to the refrigerant path and the branch path, and, when the control valves run the refrigerant to both the refrigerant path and the branch path, the control device increases the speed of the electric compressor.
摘要:
In a vehicle air conditioner, a first air-conditioning control value is calculated based on a surface temperature detected by a non-contact temperature sensor in a temperature detection area of a passenger compartment. When it is determined that an obstacle exists between the temperature detection area and the non-contact temperature sensor, a second air-conditioning control value is calculated according to a temperature information that is influenced less by the obstacle than the detected surface temperature. When it is determined that the obstacle does not exist, an air conditioning state of the passenger compartment is controlled based on the first air-conditioning control value. When it is determined that the obstacle exists, the first air-conditioning control value is corrected to approach the second air-conditioning control value to calculate a corrected air-conditioning control value, so that the air conditioning state can be controlled satisfactorily.