摘要:
An underlying layer is composed of Co—Fe—B that is an amorphous magnetic material. Thus, the upper surface of the underlying layer can be taken as a lower shield layer-side reference position for obtaining a gap length (GL) between upper and lower shields, resulting in a narrower gap than before. In addition, since the underlying layer has an amorphous structure, the underlying layer does not adversely affect the crystalline orientation of individual layers to be formed thereon, and the surface of the underlying layer has good planarizability. Accordingly, PW50 (half-amplitude pulse width) and SN ratio can be improved more than before without causing a decrease in rate of change in resistance (Δ R/R) or the like, thereby achieving a structure suitable for increasing recording density.
摘要翻译:下层由作为非晶磁性材料的Co-Fe-B组成。 因此,可以将下层的上表面作为下屏蔽层侧参考位置,以获得上屏蔽和下屏蔽之间的间隙长度(GL),导致与之前的间隙较窄。 此外,由于底层具有非晶结构,所以下层不会对要在其上形成的各层的结晶取向产生不利影响,并且下层的表面具有良好的平坦化性。 因此,PW50(半幅度脉冲宽度)和SN比可以比以前更多地改善,而不会导致电阻变化率(&Dgr; R / R)等的降低,从而实现适于提高记录密度的结构。
摘要:
In a tunneling magnetoresistive element, an insulating barrier layer is made of Mg—O, and a first pinned magnetic layer has a laminated structure in which a nonmagnetic metal sublayer made of Ta is interposed between a lower ferromagnetic sublayer and an upper ferromagnetic sublayer. The nonmagnetic metal sublayer has an average thickness of about 1 Å or more and about 5 Å or less.
摘要:
A free magnetic layer of a tunnel-effect type magnetic sensor is formed on an insulating barrier layer made of Mg—O, and the free magnetic layer includes an enhancement layer, a first soft magnetic layer, a non-magnetic metal layer, and a second soft magnetic layer, which are laminated in that order from the bottom. For example, the enhancement layer is formed of Co—Fe, the first and the second soft magnetic layers are formed of Ni—Fe, and the non-magnetic metal layer is formed of Ta. The average thickness of the first soft magnetic layer is formed in the range of 5 to 60 Å. Accordingly, a high resistance change rate (ΔR/R) can be obtained.
摘要:
A free magnetic layer of a tunnel-effect type magnetic sensor is formed on an insulating barrier layer made of Mg—O, and the free magnetic layer includes an enhancement layer, a first soft magnetic layer, a non-magnetic metal layer, and a second soft magnetic layer, which are laminated in that order from the bottom. For example, the enhancement layer is formed of Co—Fe, the first and the second soft magnetic layers are formed of Ni—Fe, and the non-magnetic metal layer is formed of Ta. The average thickness of the first soft magnetic layer is formed in the range of 5 to 60 Å. Accordingly, a high resistance change rate (ΔR/R) can be obtained.
摘要:
A tunnel magnetoresistive sensor includes a pinned magnetic layer, an insulating barrier layer formed of Mg—O, and a free magnetic layer. A barrier-layer-side magnetic sublayer constituting at least part of the pinned magnetic layer and being in contact with the insulating barrier layer includes a first magnetic region formed of CoFeB or FeB and a second magnetic region formed of CoFe or Fe. The second magnetic region is disposed between the first magnetic region and the insulating barrier layer.
摘要:
A tunnel magnetoresistive sensor includes a pinned magnetic layer, an insulating barrier layer formed of Mg—O, and a free magnetic layer. A barrier-layer-side magnetic sublayer constituting at least part of the pinned magnetic layer and being in contact with the insulating barrier layer includes a first magnetic region formed of CoFeB or FeB and a second magnetic region formed of CoFe or Fe. The second magnetic region is disposed between the first magnetic region and the insulating barrier layer.
摘要:
An underlying layer is composed of Co—Fe—B that is an amorphous magnetic material. Thus, the upper surface of the underlying layer can be taken as a lower shield layer-side reference position for obtaining a gap length (GL) between upper and lower shields, resulting in a narrower gap than before. In addition, since the underlying layer has an amorphous structure, the underlying layer does not adversely affect the crystalline orientation of individual layers to be formed thereon, and the surface of the underlying layer has good planarizability. Accordingly, PW50 (half-amplitude pulse width) and SN ratio can be improved more than before without causing a decrease in rate of change in resistance (Δ R/R) or the like, thereby achieving a structure suitable for increasing recording density.
摘要:
A tunneling magnetic sensing element includes a laminate in which a pinned magnetic layer having a magnetization direction pinned, an insulating barrier layer, and a free magnetic layer having a magnetization direction variable with an external magnetic field are laminated in order from below. The insulating barrier layer is made of Mg—O. The free magnetic layer has a soft magnetic layer and an enhanced layer disposed between the soft magnetic layer and the insulating barrier layer to have a spin polarization ratio higher than the soft magnetic layer. An insertion magnetic layer made of one selected from Co—Fe—B, Co—B, Fe—B, and Co—Fe is inserted into the soft magnetic layer in a direction parallel to the interface of each layer constituting the laminate, and the soft magnetic layer is divided into multiple layers in a thickness direction through the insertion magnetic layer.
摘要:
A free magnetic layer has a laminated structure in which a first magnetic sublayer composed of Co—Fe or Fe and a second magnetic sublayer composed of Co—Fe—B or Fe—B are formed, in that order, on an insulating barrier layer composed of Mg—O. This effectively improves the rate of change in resistance (ΔR/R) compared with the related art.
摘要翻译:自由磁性层具有层叠结构,其中由Co-Fe或Fe组成的第一磁性子层和由Co-Fe-B或Fe-B组成的第二磁性子层依次形成在绝缘阻挡层上 的Mg-O。 与现有技术相比,这有效地提高了电阻变化率(&Dgr; R / R)。
摘要:
A first pinned magnetic sublayer 4a has a multilayered structure including a first insertion subsublayer disposed between a lower ferromagnetic subsublayer and an upper ferromagnetic subsublayer. The first insertion subsublayer has an average thickness exceeding 3 Å and 6 Å or less. This results in an interlayer coupling magnetic field Hin lower than a known art while RA and the rate of resistance change (ΔR/R) substantially identical to those of the known structure are maintained.
摘要翻译:第一固定磁性子层4a具有多层结构,其包括设置在下铁磁共晶层与上部铁磁层之间的第一插入层。 第一个插入次层具有超过3埃和6埃或更小的平均厚度。 这导致层间耦合磁场Hin低于已知技术,而RA和电阻变化率(&Dgr; R / R)与已知结构基本相同。