摘要:
Disclosed is a sequentially ordered biodegradable lactide (or glycolide or lactide/glycolide)/&egr;-caprolactone multi-block copolymers having proper degradation properties and enhanced mechanical properties such as flexibility and elasticity and a process for the preparation thereof.
摘要:
The present invention relates to polyethyleneglycol/polylactide(or polyglycolide or polycaprolactone)/polyethyleneglycol triblock copolymers with an enhanced reactivity, and process for their preparation. More specifically, the present invention is directed to triblock copolymers that are obtained by the process comprising the step of synthesizing a polylactide(or polyglycolide or polycaprolactone) having hydroxy groups at both ends and the step of coupling said polylactide with polyethyleneglycol having an acylhalide group of a high reactivity at one of its ends, and the process for preparing the same Since the triblock copolymer according to the present invention has an ester structure with good biocompatibility, it can be applied extensively for biomaterials used in tissue engineering, in a matrix that slowly releases drugs, etc.
摘要:
Disclosed are a method for preparing biodegradable polymer materials, biodegradable polymer materials, and a product for fixing bone. The method includes a complex preparing step of preparing polylactide stereoisomeric complex by using a polymer having weight-average molecular weight more than 100,000 g/mol; a molding step of compression-molding the complex; a cooling step of cooling the compression-molded complex; and an extruding step of solid state extruding the cooled complex. Biodegradable polymer materials prepared by the method may be applied to a product for fixing bone or spine requiring high strength. Biodegradable polymer materials may have no corrosion in the body, may require no additional operation for removal after healing bones and tissues, and may prevent stress shielding.
摘要:
The present invention relates to a method of preparing a porous polymer scaffold for tissue engineering using a gel spinning molding technique. The method of the present invention can prepare a porous polymer scaffold having a uniform pore size, high interconnectivity between pores and mechanical strength, as well as high cell seeding and proliferation efficiencies, which can be effectively used in tissue engineering applications. Further, the method of the present invention can easily mold a porous polymer scaffold in various types such as a tube type favorable for regeneration of blood vessels, esophagus, nerves and the like, as well as a sheet type favorable for regeneration of skins, muscles and the like, by regulating the shape and size of a template shaft.
摘要:
Disclosed are surface-modified medical metallic materials and preparation thereof. The medical metallic material is prepared by coating a gold or silver thin layer onto a base metal, adsorbing a polyfunctional sulfur compound onto the gold or silver thin layer, and chemically bonding a biologically active material such as heparin or estradiol to the functional group of the sulfur compound. The biologically active material is firmly bonded to the base metal via the sulfur compound. Being significantly improved in antithrombogenicity and biocompatibility, the metallic materials are suitable for use in various implants, including stents, artificial cardiac valves and catheters.
摘要:
In polymerizing biodegradable polymer material, a compressed gas is used as a reaction solvent for a solution-polymerization, in order to prepare biodegradable polyester homopolymer and copolymer with a high molecular weight in a fine powder form with a particle size of 0.01˜1000 μm.
摘要:
The present invention relates to a method of modulating a release of biomolecules having heparin-binding affinity, and more specifically, to a method of modulating a release of biomolecules having heparin-binding affinity, using thiolated heparin adsorbed on metal surface. According to the present invention, it is possible to modulate various biomolecules having heparin-binding affinity such as growth factors spatiotemporally by external electrical stimulations, without causing cytotoxicity and having deteriorating effects on cell activity. Thus, the present invention can be applied for various biomedical and biotechnical fields including drug delivery, biosensor, and cell culture.
摘要:
The present invention relates to a biopolymer-modified nanocarrier in which chitosan is bound to a water-soluble biocompatible polymer that has been crosslinked via a photo-crosslinkable functional group; wherein the chitosan-modified nanocarrier has a diameter which changes in accordance with changes in temperature, has enhanced skin permeability or cellular uptake and selective delivery to cancer tissue as compared with a bare nanocarrier to which chitosan has not been bound, and exhibits characteristics that are advantageous in photothermal therapy. The chitosan-modified nanocarrier of the present invention exhibits highly superior efficacy as a transdermal carrier, since the skin permeability is enhanced to a significant level as compared with a bare nanocarrier that has no chitosan. The chitosan-modified nanocarrier of the present invention can be advantageous in the imaging and photothermal therapy of tumour cells and cancer cells, since the cellular uptake by tumour cells and cancer cells is substantially improved.
摘要:
One aspect of the present invention relates to an electric toothbrush in which an LED unit is mounted to perform oral sterilization and tooth whitening treatment during the brushing of the teeth, and further relates to a toothbrush bristle assembly for the electric toothbrush. The electric toothbrush according to one embodiment of the present invention comprises: a toothbrush bristle assembly including a handle having a vibrator, and a coupling space into which the vibrator is coupled. The toothbrush bristle assembly comprises: a toothbrush bristle body having a brush; an LED unit mounted on the toothbrush bristle body to perform oral sterilization and tooth whitening treatment; and a connector module having a first connector arranged in the toothbrush bristle body to interconnect the LED unit and a driving power source, as well as a second connector arranged in the vibrator.
摘要:
The specification describes an invention of calcification resistant bioprosthetic heart valves which can be used for a long term, and have good blood compatibility and in vivo stability, and have high calcification resistance. The bioprosthetic heart valves of the invention can be prepared by binding sulfonated polyethylene oxide (PEO) derivatives covalently to the tissue. The valves have an anionic effect equal to that of chondroitin sulfate, space filling effect, and blocking effect of the carboxyl group of collagen which has been known as one factor of the calcium deposition,. In particular, the present method has better advantages in view of calcification resistance than any other conventional methods, because it suppresses thrombosis and embolism and decreases incidence of infection.