摘要:
Composition and method for making a multi-layer bio-based film having one or more cavitated layers. In one aspect, the multilayer flexible film has polylactic acid, an inorganic filler, and a cavitation stabilizer making up at least one film layer. In one aspect, the barrier web has a cavitated bio-based film layer. In another aspect, the print web has a cavitated bio-based film layer.
摘要:
A device for polymerizing lactams in molds includes a hopper for storing solid lactam and a lactam feeding component that includes a plasticizing screw so as the lactam to be melted and simultaneously taken in a dosed manner to a mixing chamber. The device further includes a first dosing component to feed a liquid initiator, and a second dosing component to feed a liquid activator. The mixing chamber is configured to receive in a dosed manner the lactam, the initiator, and the activator from the feeding and dosing components. The mixing chamber has three separate inlets to receive, separately, the lactam, the initiator, and the activator, to allow them to flow into the mixing chamber coming into contact with one another for the first time, at the moment immediately prior to entering into a mold located adjacent the chamber and arranged for the polymerization reaction to take place inside the mold.
摘要:
Composition and method for making a multi-layer bio-based film having one or more cavitated layers. In one aspect, the multilayer flexible film has polylactic acid, an inorganic filler, and a cavitation stabilizer making up at least one film layer. In one aspect, the barrier web has a cavitated bio-based film layer. In another aspect, the print web has a cavitated bio-based film layer.
摘要:
Embodiments of the present invention relates to an acoustic metamaterial, as well as to a method for manufacturing the same. The acoustic metamaterial includes a plurality of channels or columns each having the same cross-section with a hydraulic radius between 5 and 300 μm, which channels or columns are arranged with a periodic spacing between 2 and 600 μm. This results in a highly dense network that can provide optimal acoustic absorption and/or impedance over a wide frequency range. The method for manufacturing the same includes additive manufacturing with a plurality of consecutive material deposition steps to form, in each step, a layer comprising a plurality of periodically repeated cells separated by walls. The layers deposited in the consecutive material deposition steps are stacked with their respective cells aligned to form channels.
摘要:
A method for producing a three-dimensional (3D) object having excellent moldability and mechanical characteristics is provided. The method includes a molding step of irradiating a composition filled in the cavity of a mold with electromagnetic waves having a wavelength of from 0.01 m to 100 m, and molding the composition into the 3D object. The composition for molding a 3D object contains a solvent and at least one of a polymer and a polymerizable monomer.
摘要:
Composition and method for making a multi-layer bio-based film having one or more cavitated layers. In one aspect, the multilayer flexible film has polylactic acid, an inorganic filler, and a cavitation stabilizer making up at least one film layer. In one aspect, the barrier web has a cavitated bio-based film layer. In another aspect, the print web has a cavitated bio-based film layer.
摘要:
Composition and method for making a multi-layer bio-based film having one or more cavitated layers. In one aspect, the multilayer flexible film has polylactic acid, an inorganic filler, and a cavitation stabilizer making up at least one film layer. In one aspect, the barrier web has a cavitated bio-based film layer. In another aspect, the print web has a cavitated bio-based film layer.
摘要:
Disclosed are a method for preparing biodegradable polymer materials, biodegradable polymer materials, and a product for fixing bone. The method includes a complex preparing step of preparing polylactide stereoisomeric complex by using a polymer having weight-average molecular weight more than 100,000 g/mol; a molding step of compression-molding the complex; a cooling step of cooling the compression-molded complex; and an extruding step of solid state extruding the cooled complex. Biodegradable polymer materials prepared by the method may be applied to a product for fixing bone or spine requiring high strength. Biodegradable polymer materials may have no corrosion in the body, may require no additional operation for removal after healing bones and tissues, and may prevent stress shielding.