摘要:
Provided is a high power super capacitor including: a bobbin; an electrode assembly being wound into the bobbin to be in a jellyroll type; a conductive connection member being formed in each of one end and another end of the electrode assembly using electric energy; and a plug being inserted into each of one end and another end of the bobbin, and being bonded with the conductive connection member using electric energy to be electrically connected to the electrode assembly. The electrode assembly may include a first electrode plate having a first polarity and including an inactive material area collector where the conductive connection member is formed in the one end of the electrode assembly, a second electrode plate having a second polarity and including another inactive material area collector where the conductive connection member is formed in the other end of the electrode assembly, and a separator being disposed between the first electrode plate and the second electrode plate to insulate between the first electrode plate and the second electrode plate. Accordingly, the high power super capacitor may increase a contact area without decreasing an area of electrode active material layer and may decrease an equivalent series resistance by forming a conductive connection member using electric energy, thereby enhancing an exothermic characteristic and being applied to a high power field.
摘要:
Provided is a package type multi-layer thin film capacitor for large capacitance, including: a ceramic sintered body formed with slots on one side and another side thereof, respectively; a plurality of first internal electrode layers formed within the ceramic sintered body; a plurality of second internal electrode layers formed within the ceramic sintered body to be positioned between the plurality of first internal electrode layers; a pair of first main connection electrode members inserted into the slots to be connected to the first internal electrode layers or the second internal electrode layers, respectively; a pair of first main lead members inserted into the slots and to be connected to the first main connection electrode members, respectively; and a sealing member sealing the ceramic sintered body to partially expose each of the pair of first main lead members.
摘要:
Provided is a package type multilayer thin film capacitor for a high capacitance, including: a capacitance block 110; a pair of clamp members 120 and 130 being installed on one side and another side of the capacitance block 110, respectively; a pair of lead members 140 and 150 being installed on the clam members 120 and 130, respectively; and a molding member 160 filling in the capacitance block 110 to partially expose each of the pair of lead members 140 and 150. The capacitance block may be configured by adhering at least two of a ceramic sintered member 111, a metal capacitance member 112, and a thin film capacitance member 113 using an insulating adhesive member and thereby disposing the at least two members in a multilayered form. Accordingly, capacitance may increase and mechanical strength may be enhanced.
摘要:
Provided is a hybrid super capacitor using a composite electrode that may enhance equivalent series resistance (ESR) using a carbon nanotube chain. The hybrid super capacitor includes: an anode 11 including an anode oxide layer 11a and an activated carbon layer applied 11b on the anode oxide layer 11a; and a cathode 21 being disposed to face the anode 11. The cathode 21 may include a silicon oxide layer 21a, a lithium titanium oxide layer 21b disposed on the silicon oxide layer 21a, and a carbon nanotube chain CT formed to pass through the silicon oxide layer 21a and the lithium titanium oxide layer 21b to thereby be electrically connected to each other, thereby enhancing ESR and expanding an output density and a lifespan of the hybrid super capacitor.
摘要:
Disclosed are a glass composition and a dielectric composition enabling low temperature sintering, and a high capacitance multilayer ceramic capacitor using the same. In the glass composition used for sintering, the glass composition may be formed of a formula, aR2O-bCaO-cZnO-dBaO-eB2O3-fAl2O3-gSiO2, and the formula may satisfy a+b+c+d+e+f+g=100, 0≦a≦7, 1≦b≦3, 1≦c≦15, 10≦d≦20, 3≦e≦10, 0≦f≦3, and 55≦g≦72. Through this, when manufacturing the high capacity multilayer ceramic capacitor, the dielectric substance may enable the lower temperature sintering, thereby enhancing a capacitance and a reliability of the high capacitance multilayer ceramic capacitor.
摘要翻译:公开了一种能够进行低温烧结的玻璃组合物和电介质组合物,以及使用其的高容量多层陶瓷电容器。 在用于烧结的玻璃组合物中,玻璃组合物可由式aR2O-bCaO-cZnO-dBaO-eB2O3-fAl2O3-gSiO2形成,式可以满足+ b + c + d + e + f + g = 100,0≦̸ a≦̸ 7,1≦̸ b≦̸ 3,1≦̸ c≦̸ 15,10≦̸ d≦̸ 20,3≦̸ e≦̸ 10,0≦̸ f≦̸ 3和55≦̸ g≦̸ 72。 由此,在制造高容量多层陶瓷电容器时,电介质可以实现低温烧结,从而提高高容量多层陶瓷电容器的电容和可靠性。
摘要:
Provided is a flexible multilayer thin film capacitor using a flexible metal substrate, including: a metal substrate; a metal oxide layer formed on the whole surface of the metal substrate; a plurality of first internal electrode layers selectively applied on a first surface of the metal substrate using a metal material; a plurality of dielectric layers formed to be sequentially multi-layered on the whole surface of the first internal electrode layers using a dielectric material; a plurality of second internal electrode layers selectively applied on the dielectric layers using a metal material; a protecting layer applied on a surface of one of the plurality of second internal electrode layers; and a single pair of external electrodes connected to contact with the plurality of first internal electrode layers and the plurality of second internal electrode layers, respectively, and soldered on conductive inter-layer pads of a printed circuit board.
摘要:
Provided is a preparation method of a metal oxide doped monolith carbon aerogel for a high capacitance capacitor, the including: preparing a monolith carbon aerogel by performing a thermal decomposition of a moist gel dried in condition of a atmospheric pressure and a room temperature in a nitrogen atmosphere; impregnating the monolith carbon aerogel into alcohol where a metal precursor is dissolved; and calcinating the monolith carbon aerogel where the metal precursor is impregnated in an atmospheric atmosphere. By impregnating the metal oxide into the monolith carbon aerogel, a limit of capacitance may be enhanced using a pseudo capacitance effect by an interfacial oxidation reduction reaction.