摘要:
Provided are a dual structure FinFET and a method of fabricating the same. The FinFET includes: a lower device including a lower silicon layer formed on a substrate and a gate electrode vertically formed on the substrate; an upper device including an upper silicon layer formed on the lower device and the vertically formed gate electrode; and a first solid source material layer, a solid source material interlayer insulating layer, and a second solid source material layer sequentially formed between the lower silicon layer and the upper silicon layer. Therefore, the FinFET can be provided which enhances the density of integration of a circuit, suppresses thin film damages due to ion implantation using solid phase material layers, and has a stabilized characteristic by a simple and low-cost process. Also, mobility of an upper device can be improved to enhance current drivability of the upper device, isolation can be implemented through a buried oxide layer to reduce an effect due to a field oxide layer, and raised source and drain can be implemented to reduce serial resistance components of the source and drain to increase current drivability.
摘要:
Provided are a multiple-gate MOS (metal oxide semiconductor) transistor and a method of manufacturing the same. The transistor includes a single crystalline active region having a channel region having an upper portion of a streamlined shape (∩) obtained by patterning an upper portion of a bulk silicon substrate with an embossed pattern, and having a thicker and wider area than the channel region; a nitride layer formed at both side surfaces of the single crystalline active region to expose an upper portion of the single crystalline active region at a predetermined height; and a gate electrode formed to be overlaid with the exposed upper portion of the single crystalline active region of the channel region.
摘要:
Provided are a reconfigurable arithmetic unit and a processor having the same. The reconfigurable arithmetic unit can perform an addition operation or a multiplication operation according to an instruction by sharing an adder. The reconfigurable arithmetic unit includes a booth encoder for encoding a multiplier, a partial product generator for generating a plurality of partial products using the encoded multiplier and a multiplicand, a Wallace tree circuit for compressing the partial products into a first partial product and a second partial product, a first Multiplexer (MUX) for selecting and outputting one of the first partial product and a first addition input according to a selection signal, a second MUX for selecting and outputting one of the second partial product and a second addition input according to the selection signal, and a Carry Propagation Adder (CPA) for adding an output of the first MUX and an output of the second MUX to output an operation result. The arithmetic unit can operate as an adder or a multiplier according to an instruction, and thus can increase the degree of use of entire hardware.
摘要:
Provided is a low-power clock gating circuit using a Multi-Threshold CMOS (MTCMOS) technique. The low-power clock gating circuit includes a latch circuit of an input stage and an AND gate circuit of an output stage, in which power consumption caused by leakage current in the clock gating circuit is reduced in a sleep mode, and supply of a clock to a unused device of a targeted logic circuit is prevented by the control of a clock enable signal in an active mode, thereby reducing power consumption. The low-power clock gating circuit using an MTCMOS technique uses devices having a low threshold voltage and devices having a high threshold voltage, which makes it possible to implement a high-speed, low-power circuit, unlike a conventional clock gating circuit using a single threshold voltage.
摘要:
Provided is a parallel processor for supporting a floating-point operation. The parallel processor has a flexible structure for easy development of a parallel algorithm involving multimedia computing, requires low hardware cost, and consumes low power. To support floating-point operations, the parallel processor uses floating-point accumulators and a flag for floating-point multiplication. Using the parallel processor, it is possible to process a geometric transformation operation in a 3-dimensional (3D) graphics process at low cost. Also, the cost of a bus width for instructions can be minimized by a partitioned Single-Instruction Multiple-Data (SIMD) method and a method of conditionally executing instructions.
摘要:
Provided is a parallel processor for supporting a floating-point operation. The parallel processor has a flexible structure for easy development of a parallel algorithm involving multimedia computing, requires low hardware cost, and consumes low power. To support floating-point operations, the parallel processor uses floating-point accumulators and a flag for floating-point multiplication. Using the parallel processor, it is possible to process a geometric transformation operation in a 3-dimensional (3D) graphics process at low cost. Also, the cost of a bus width for instructions can be minimized by a partitioned Single-Instruction Multiple-Data (SIMD) method and a method of conditionally executing instructions.
摘要:
A multiple-single instruction multiple data (SIMD) processor and an arithmetic method using the same are disclosed. When various arithmetic operations should be individually carried out by SIMD arithmetic units, control right is sub-divided to perform the arithmetic operations, such that the time of the arithmetic operations can be shortened and the efficiency thereof can be raised. When sub-divided control is not required, the control right is withdrawn and the arithmetic operations are carried out using a minimum number of program memories and a minimum number of SIMD arithmetic units, such that memory and power consumption thereof can be reduced.
摘要:
Provided is a System on Chip (SoC) system for a multimedia system enabling high-speed transfer of a large amount of multimedia data and a processor to rapidly control a peripheral device. The SoC system includes a processor; a plurality of peripheral devices; a plurality of physically divided memories; a control bus for transferring a control signal from the processor to the peripheral devices and the memories; a data bus for transferring data between the processor, the peripheral devices and the memories; a bridge for coupling the control bus and the data bus to the processor; a plurality of memory controllers coupled to the control bus and controlling each of the memories; a Direct Memory Access (DMA) controller coupled to the data bus and the control bus and controlling data transfer between the peripheral devices and the memories; and a matrix switch coupled between the DMA controller and the memory controllers and enabling simultaneous multiple memory access.
摘要:
Provided are an apparatus and method for calculating a Sum of Absolute Differences (SAD) for motion estimation of a variable block capable of parallelly calculating SAD values with respect to a plurality of current frame macroblocks at a time. The apparatus includes a PE array unit including at least one Processing Element (PE) that is aligned in the form of a matrix, and parallelly calculating a SAD value of at least one pixel provided in a plurality of serial current frame macroblocks, a local memory including current frame macroblock data, reference frame macroblock data, and reference frame search area data, and transmitting the data to each PE that is provided in the PE array unit, and a controller for making a command for the data that are provided in the local memory to be transmitted corresponding to at least one pixel, on which each PE provided in the PE array unit performs calculation.
摘要:
Provided is a voltage supply circuit using a charge pump. The voltage supply circuit enhances charge pump output voltage fluctuation characteristics depending on load variation of a charge pump voltage generator (load regulation characteristics) when receiving an operation power supply voltage of the charge pump through a regulator. The voltage supply circuit is configured to feed back fluctuation of a charge pump output voltage to a charge pump voltage regulator. The fluctuation of the charge pump output voltage is compensated through fluctuation of an output voltage of the charge pump to active enhance the load regulation characteristics.