摘要:
A method of growing a semiconductor layer in a selective area by Metal Organic Chemical Vapor Deposition (MOCVD) and a mask pattern for s ame, includes a first mask pattern and a second mask pattern that are formed on a semiconductor substrate having a (100) crystalline plane. The first mask pattern has a first window wider than the selective area and a second mask pattern has a second window and a third window. The second window is defined by spacing the second mask pattern from the first mask pattern, in correspondence with a blocking area for blocking the surface migration of III-group semiconductor source gases at edges of the first window. The third window is as wide as the selective area. The semiconductor layer is grown by MOCVD on the semiconductor substrate exposed by the second and third windows. Trenches can be etched in the second and third windows and growth layers extend from the trench beyond the surface of the InP to block gas dispersion.
摘要:
A semiconductor optical device including an SSC region includes a semiconductor substrate, a lower clad layer grown on the semiconductor substrate, and an upper clad layer grown on the lower clad layer. The semiconductor optical device with an SSC (Spot Size Conversion) area includes a gain area including an active layer grown between the lower clad layer and the upper clad layer to generate/amplify an optical signal; and an SSC (Spot Size Conversion) area including a waveguide layer extended from the active layer positioned between the lower and upper clad layers, such that it performs a spot size conversion (SSC) process of the optical signal generated from the gain area and generates the SSC-processed optical signal. The waveguide layer of the SSC area is configured to gradually reduce its thickness in proportion to a distance from the active layer, and the upper clad layer is etched in the form of a taper structure such that the taper structure has a narrower width in proportion to a distance from one end of the semiconductor optical device having the gain area to the other end of the semiconductor optical device having the SSC area.
摘要:
A method of growing a semiconductor layer in a selective area by Metal Organic Chemical Vapor Deposition (MOCVD) and a mask pattern for s ame, includes a first mask pattern and a second mask pattern that are formed on a semiconductor substrate having a (100) crystalline plane. The first mask pattern has a first window wider than the selective area and a second mask pattern has a second window and a third window. The second window is defined by spacing the second mask pattern from the first mask pattern, in correspondence with a blocking area for blocking the surface migration of III-group semiconductor source gases at edges of the first window. The third window is as wide as the selective area. The semiconductor layer is grown by MOCVD on the semiconductor substrate exposed by the second and third windows. Trenches can be etched in the second and third windows and growth layers extend from the trench beyond the surface of the InP to block gas dispersion.
摘要:
A method of manufacturing a laser diode having an active layer made from semiconductor substances containing aluminum is disclosed. The method comprises the steps of forming a first mask, which has first and second slits spaced apart from each other, on a substrate, forming first and second oxidation barrier layers, which are limited by the first and second slits, on the substrate through selective area growth (SAG) using the first mask, and forming a plurality of layers including the active layer containing aluminum between the first and second oxidation barrier layers on the substrate.
摘要:
Disclosed is a method for manufacturing a semiconductor optical device for flip-chip bonding. The method includes the steps of: etching an active layer and clad which are sequentially stacked on a semiconductor substrate into first and second alignment keys and an optical area, which has a mesa structure; growing at least two insulating layers at mesa-etched portions between the first and second alignment keys and the optical areas; and forming protection masks on the first and second alignment keys, growing an electrode on the optical area and the insulating layer except for the protection masks, and removing the protection masks.
摘要:
A semiconductor laser having a spot-size converter (SSC) is provided. The semiconductor laser includes: a substrate; a gain region formed on the substrate to emit laser; an SSC region formed on the substrate to convert an optical mode of the emitted laser; and an upper layer formed on the gain region and the SSC region and having a larger thickness in the SSC region in comparison with the gain region. As a result, the laser vertically expands through the upper layer that is thicker along the SSC region so that an NFP (near field pattern) becomes larger and an FFP (far field pattern) becomes smaller, thus minimizing insertion loss into an optical fiber.
摘要:
Disclosed is a method for manufacturing a semiconductor optical device for flip-chip bonding. The method includes the steps of: etching an active layer and clad which are sequentially stacked on a semiconductor substrate into first and second alignment keys and an optical area, which has a mesa structure; growing at least two insulating layers at mesa-etched portions between the first and second alignment keys and the optical areas; and forming protection masks on the first and second alignment keys, growing an electrode on the optical area and the insulating layer except for the protection masks, and removing the protection masks.