摘要:
Methods and systems for pelletizing low molecular weight semi-crystalline polymers are provided herein. Polymer compositions comprising the semi-crystalline polymer and a solvent are provided to a devolatilizing device, where the solvent is at least partially evaporated under vacuum conditions, resulting in removal of heat from the polymer by evaporative cooling and crystallization of the polymer. Once the polymer has reached the desired temperature, the polymer exits the devolatilizer and is pelletized. Semi-crystalline polymers that may be used in the present invention include propylene-based copolymers, such as propylene-ethylene and propylene-hexene copolymers having a heat of fusion, Hf, from about 5 to about 75 J/g and a weight average molecular weight, Mw, from about 10,000 to about 200,000 g/mol.
摘要:
Methods and systems for pelletizing low molecular weight semi-crystalline polymers are provided herein. Polymer compositions comprising the semi-crystalline polymer and a solvent are provided to a devolatilizing device, where the solvent is at least partially evaporated under vacuum conditions, resulting in removal of heat from the polymer by evaporative cooling and crystallization of the polymer. Once the polymer has reached the desired temperature, the polymer exits the devolatilizer and is pelletized. Semi-crystalline polymers that may be used in the present invention include propylene-based copolymers, such as propylene-ethylene and propylene-hexene copolymers having a heat of fusion, Hf, from about 5 to about 75 J/g and a weight average molecular weight, Mw, from about 10,000 to about 200,000 g/mol.
摘要:
The present invention is related to adhesive compositions and their applications. In particular, the adhesive compositions described herein comprise a two or more propylene-based copolymers with varying comonomer content.
摘要:
The present invention is related to adhesive compositions and their applications. In particular, the adhesive compositions described herein comprise a two or more propylene-based copolymers with varying comonomer content.
摘要:
Methods and system for in-situ measurement of polymer growth within an olefin polymerization reactor are provided. The method includes polymerizing one or more olefins within a reactor at a first temperature sufficient to deposit a polymer coating therein. A second temperature is created within the reactor, and a rate of temperature change is measured from the first temperature to the second temperature. The rate of temperature change is correlated to a thickness of the polymer coating deposited within the reactor.
摘要:
Provided is a polymer composition having a linear, semi-crystalline thermoplastic matrix polymer and a second thermoplastic polymer. The second polymer is a substantially saturated hydrocarbon polymer including (i) a backbone chain and (ii) one or more substantially hydrocarbon sidechains connected to the backbone chain. The sidechains each have a number-average molecular weight of from 2,500 g/mol to 125,000 g/mol and an MWD by SEC of 1.0 to 3.5. The mass ratio of sidechain molecular mass to backbone molecular mass is from 0.01:1 to 100:1. The matrix polymer is present at 95 wt % or more based on the weight of the composition. The second polymer is present at 0.2 to 5.0 wt % or more based on the weight of the composition. Provided is also a method for enhancing flow-induced crystallization in a linear, semi-crystalline thermoplastic matrix polymer. Provided is also a method for processing a polymer composition.
摘要:
Methods and system for in-situ measurement of polymer growth within an olefin polymerization reactor are provided. The method includes polymerizing one or more olefins within a reactor at a first temperature sufficient to deposit a polymer coating therein. A second temperature is created within the reactor, and a rate of temperature change is measured from the first temperature to the second temperature. The rate of temperature change is correlated to a thickness of the polymer coating deposited within the reactor.
摘要:
The present invention is directed to carbon nanotube (CNT)/polymer composites, i.e., nanocomposites, wherein the CNTs in such nanocomposites are highly dispersed in a polymer matrix, and wherein the nanocomposites comprise a compatibilizing surfactant that interacts with both the CNTs and the polymer matrix. The present invention is also directed to methods of making these nanocomposites. In some such methods, the compatibilizing surfactant provides initial CNT dispersion and subsequent mixing with a polymer. The present invention is also directed to methods of using these nanocomposites in a variety of applications.
摘要:
The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.
摘要:
The present invention is directed to carbon nanotube (CNT)/polymer composites, i.e., nanocomposites, wherein the CNTs in such nanocomposites are highly dispersed in a polymer matrix, and wherein the nanocomposites comprise a compatibilizing surfactant that interacts with both the CNTs and the polymer matrix. The present invention is also directed to methods of making these nanocomposites. In some such methods, the compatibilizing surfactant provides initial CNT dispersion and subsequent mixing with a polymer. The present invention is also directed to methods of using these nanocomposites in a variety of applications.