摘要:
Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, flits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanolitre/picolitre-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals. A self-aligned channel-strengthening technique increases pressure rating of the microfluidic system, allowing it to withstand the high pressure normally used in high performance liquid chromatography (HPLC). On-chip sample injection, separation, and detection of mixture of anions in water is successfully demonstrated using ion-exchange nano-LC.
摘要:
Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, frits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanolitre/picolitre-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals. A self-aligned channel-strengthening technique increases pressure rating of the microfluidic system, allowing it to withstand the high pressure normally used in high performance liquid chromatography (HPLC). On-chip sample injection, separation, and detection of mixture of anions in water is successfully demonstrated using ion-exchange nano-LC.
摘要:
An apparatus for liquid chromatography comprises a liquid chromatography separation column on a substrate, wherein the separation column is coupled to a heater on the substrate. A chip-based temperature controlled liquid chromatography device comprises a substrate, a thermal isolation zone, and a separation column thermally isolated from the substrate by the thermal isolation zone. An apparatus for chip-based liquid chromatography comprising a cooling device is provided. A temperature gradient liquid chromatography system comprises a chip-based temperature controlled liquid chromatography device, a fluidic coupling, and an electrical interface. Methods of making and methods of using of chip-based temperature gradient liquid chromatography devices are also provided.
摘要:
An apparatus for liquid chromatography comprises a liquid chromatography separation column on a substrate, wherein the separation column is coupled to a heater on the substrate. A chip-based temperature controlled liquid chromatography device comprises a substrate, a thermal isolation zone, and a separation column thermally isolated from the substrate by the thermal isolation zone. An apparatus for chip-based liquid chromatography comprising a cooling device is provided. A temperature gradient liquid chromatography system comprises a chip-based temperature controlled liquid chromatography device, a fluidic coupling, and an electrical interface. Methods of making and methods of using of chip-based temperature gradient liquid chromatography devices are also provided.
摘要:
A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.
摘要:
A method (and resulting structure) for fabricating a sensing device. The method includes providing a substrate comprising a surface region and forming an insulating material overlying the surface region. The method also includes forming a film of carbon based material overlying the insulating material and treating to the film of carbon based material to pyrolyzed the carbon based material to cause formation of a film of substantially carbon based material having a resistivity ranging within a predetermined range. The method also provides at least a portion of the pyrolyzed carbon based material in a sensor application and uses the portion of the pyrolyzed carbon based material in the sensing application. In a specific embodiment, the sensing application is selected from chemical, humidity, piezoelectric, radiation, mechanical strain or temperature.
摘要:
A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.
摘要:
A method for manufacturing a sensing device, such as a bolometer device or other devices. The method includes providing a substrate, e.g., silicon wafer. The method includes forming a first reflection layer overlying the substrate and forming a first electrode layer overlying the substrate. The method includes forming a sacrificial layer overlying a portion of the first reflection layer and a portion of the first electrode layer. The sacrificial layer is patterned using photolithography techniques. The patterned sacrificial layer corresponds to a cavity region. The method also forms a second electrode layer overlying the sacrificial layer and forms an elastic layer overlying the patterned sacrificial layer. The elastic layer encloses the cavity region corresponding to the patterned sacrificial layer. The method releases the sacrificial layer to form an opening in the cavity region.
摘要:
A method (and resulting structure) for fabricating a sensing device. The method includes providing a substrate comprising a surface region and forming an insulating material overlying the surface region. The method also includes forming a film of carbon based material overlying the insulating material and treating to the film of carbon based material to pyrolyzed the carbon based material to cause formation of a film of substantially carbon based material having a resistivity ranging within a predetermined range. The method also provides at least a portion of the pyrolyzed carbon based material in a sensor application and uses the portion of the pyrolyzed carbon based material in the sensing application. In a specific embodiment, the sensing application is selected from chemical, humidity, piezoelectric, radiation, mechanical strain or temperature.
摘要:
Embodiments of method of manufacturing an implantable pump, including providing an upper layer comprising a dome structure for housing a drug chamber and a cannula in fluid communication with the drug chamber, providing a middle deflection layer adjacent the drug chamber, providing a bottom layer comprising electrolysis electrodes, and bonding the upper layer, middle deflection layer, and bottom layer to form the pump.