摘要:
The present invention provides etchant solutions including deionized water and an organic acid having a carboxyl radical and a hydroxyl radical. Methods of forming magnetic memory devices are also disclosed.
摘要:
The present invention provides etchant solutions including deionized water and an organic acid having a carboxyl radical and a hydroxyl radical. Methods of forming magnetic memory devices are also disclosed.
摘要:
The present invention provides etchant solutions including deionized water and an organic acid having a carboxyl radical and a hydroxyl radical. Methods of forming magnetic memory devices are also disclosed.
摘要:
In one embodiment, a semiconductor device comprises a base and a tapered wall formed on the base. The wall has a midline and also has an inner sidewall and an outer sidewall. The inner sidewall and the outer sidewall are substantially symmetrical with each other in relation to the midline. Thus, the reliability of the semiconductor capacitor structure can be improved and the throughput can be increased. Also, further scaling down of semiconductor devices can be facilitated with the principles of the present invention.
摘要:
A method of manufacturing a semiconductor device using a polysilicon layer as an etching mask includes: (a) forming an interlayer dielectric over a semiconductor substrate; (b) forming a polysilicon layer pattern over the interlayer dielectric; (c) forming a contact hole in the interlayer dielectric by etching the interlayer dielectric using the polysilicon layer pattern as an etching mask; (d) removing the polysilicon layer pattern by an etching process that has a large etching selectivity of the polisilicon layer with respect to the interlayer dielectric and about 3% or less etching uniformity; and (e) forming a contact by filling the contact hole with a conductive material.
摘要:
In one embodiment, a semiconductor device comprises a base and a tapered wall formed on the base. The wall has a midline and also has an inner sidewall and an outer sidewall. The inner sidewall and the outer sidewall are substantially symmetrical with each other in relation to the midline. Thus, the reliability of the semiconductor capacitor structure can be improved and the throughput can be increased. Also, further scaling down of semiconductor devices can be facilitated with the principles of the present invention.
摘要:
In one embodiment, a semiconductor device comprises a base and a tapered wall formed on the base. The wall has a midline and also has an inner sidewall and an outer sidewall. The inner sidewall and the outer sidewall are substantially symmetrical with each other in relation to the midline. Thus, the reliability of the semiconductor capacitor structure can be improved and the throughput can be increased. Also, further scaling down of semiconductor devices can be facilitated with the principles of the present invention.
摘要:
In one embodiment, a semiconductor device comprises a base and a tapered wall formed on the base. The wall has a midline and also has an inner sidewall and an outer sidewall. The inner sidewall and the outer sidewall are substantially symmetrical with each other in relation to the midline. Thus, the reliability of the semiconductor capacitor structure can be improved and the throughput can be increased. Also, further scaling down of semiconductor devices can be facilitated with the principles of the present invention.
摘要:
In a method of manufacturing a shallow trench isolation (STI) structure using a HF vapor etching process according to some embodiments of the invention, a trench is formed in a semiconductor substrate. A buffer layer and a first insulating layer, which fill the trench, are formed. A portion of the first insulating layer is removed by performing an etching process using HF vapor, thereby removing a void existing in the first insulating layer. A second insulating layer filling the trench is formed on the etched first insulating layer. Other embodiments of the invention are described and claimed.
摘要:
A transistor having a metal nitride layer pattern, etchant and methods of forming the same is provided. A gate insulating layer and/or a metal nitride layer may be formed on a semiconductor substrate. A mask layer may be formed on the metal nitride layer. Using the mask layer as an etching mask, an etching process may be performed on the metal nitride layer, forming the metal nitride layer pattern. An etchant, which may have an oxidizing agent, a chelate agent and/or a pH adjusting mixture, may perform the etching. The methods may reduce etching damage to a gate insulating layer under the metal nitride layer pattern during the formation of a transistor.