摘要:
A method of manufacturing a semiconductor device using a polysilicon layer as an etching mask includes: (a) forming an interlayer dielectric over a semiconductor substrate; (b) forming a polysilicon layer pattern over the interlayer dielectric; (c) forming a contact hole in the interlayer dielectric by etching the interlayer dielectric using the polysilicon layer pattern as an etching mask; (d) removing the polysilicon layer pattern by an etching process that has a large etching selectivity of the polisilicon layer with respect to the interlayer dielectric and about 3% or less etching uniformity; and (e) forming a contact by filling the contact hole with a conductive material.
摘要:
In one embodiment, a semiconductor device comprises a base and a tapered wall formed on the base. The wall has a midline and also has an inner sidewall and an outer sidewall. The inner sidewall and the outer sidewall are substantially symmetrical with each other in relation to the midline. Thus, the reliability of the semiconductor capacitor structure can be improved and the throughput can be increased. Also, further scaling down of semiconductor devices can be facilitated with the principles of the present invention.
摘要:
In one embodiment, a semiconductor device comprises a base and a tapered wall formed on the base. The wall has a midline and also has an inner sidewall and an outer sidewall. The inner sidewall and the outer sidewall are substantially symmetrical with each other in relation to the midline. Thus, the reliability of the semiconductor capacitor structure can be improved and the throughput can be increased. Also, further scaling down of semiconductor devices can be facilitated with the principles of the present invention.
摘要:
In one embodiment, a semiconductor device comprises a base and a tapered wall formed on the base. The wall has a midline and also has an inner sidewall and an outer sidewall. The inner sidewall and the outer sidewall are substantially symmetrical with each other in relation to the midline. Thus, the reliability of the semiconductor capacitor structure can be improved and the throughput can be increased. Also, further scaling down of semiconductor devices can be facilitated with the principles of the present invention.
摘要:
In one embodiment, a semiconductor device comprises a base and a tapered wall formed on the base. The wall has a midline and also has an inner sidewall and an outer sidewall. The inner sidewall and the outer sidewall are substantially symmetrical with each other in relation to the midline. Thus, the reliability of the semiconductor capacitor structure can be improved and the throughput can be increased. Also, further scaling down of semiconductor devices can be facilitated with the principles of the present invention.
摘要:
A transistor having a metal nitride layer pattern, etchant and methods of forming the same is provided. A gate insulating layer and/or a metal nitride layer may be formed on a semiconductor substrate. A mask layer may be formed on the metal nitride layer. Using the mask layer as an etching mask, an etching process may be performed on the metal nitride layer, forming the metal nitride layer pattern. An etchant, which may have an oxidizing agent, a chelate agent and/or a pH adjusting mixture, may perform the etching. The methods may reduce etching damage to a gate insulating layer under the metal nitride layer pattern during the formation of a transistor.
摘要:
A transistor having a metal nitride layer pattern, etchant and methods of forming the same is provided. A gate insulating layer and/or a metal nitride layer may be formed on a semiconductor substrate. A mask layer may be formed on the metal nitride layer. Using the mask layer as an etching mask, an etching process may be performed on the metal nitride layer, forming the metal nitride layer pattern. An etchant, which may have an oxidizing agent, a chelate agent and/or a pH adjusting mixture, may perform the etching. The methods may reduce etching damage to a gate insulating layer under the metal nitride layer pattern during the formation of a transistor.
摘要:
A transistor having a metal nitride layer pattern, etchant and methods of forming the same is provided. A gate insulating layer and/or a metal nitride layer may be formed on a semiconductor substrate. A mask layer may be formed on the metal nitride layer. Using the mask layer as an etching mask, an etching process may be performed on the metal nitride layer, forming the metal nitride layer pattern. An etchant, which may have an oxidizing agent, a chelate agent and/or a pH adjusting mixture, may perform the etching. The methods may reduce etching damage to a gate insulating layer under the metal nitride layer pattern during the formation of a transistor.
摘要:
Provided are an anionic surfactant-containing etching solution for removal of an oxide film, preparation methods thereof, and methods of fabricating a semiconductor device using the etching solution. The etching solution includes a hydrofluoric acid (HF), deionized water, and an anionic surfactant. The anionic surfactant is a compound in which an anime salt is added as a counter ion, as represented by R1—OSO3−HA+, R1—CO2−HA+,R1—PO42—(HA+)2,(R1)2—PO4—HA+, or R1—SO3—HA+ where R1 is a straight or branched hydrocarbon group of C4 to C22 and A is ammonia or amine. The etching solution provides a high etching selectivity ratio of an oxide film to a nitride film or a polysilicon film. Therefore, in a semiconductor device fabrication process such as a STI device isolation process or a capacitor formation process, when an oxide film is exposed together with a nitride film or a polysilicon film, the etching solution can be efficiently used in selectively removing only the oxide film.
摘要:
An apparatus for drying a substrate using the Marangoni effect is disclosed. The apparatus includes a rotatable supporting portion on which a substrate is placed. A first nozzle for supplying de-ionized water and a second nozzle for supplying isopropyl alcohol vapor are provided on the supporting portion. When the isopropyl alcohol vapor is supplied to the center of the substrate at the initial stage, the amount of alcohol that reaches the substrate is controlled by a controlling portion such that the amount of the second liquid gradually increases.