Abstract:
A liquid crystal display and a manufacturing method thereof. The liquid crystal display includes a first substrate and a second substrate, a thin film transistor formed on the first substrate, a color filter formed on the thin film transistor, an overcoat formed on the color filter and having a contact hole, a pixel electrode formed on the overcoat and connected to the thin film transistor through the contact hole, and a liquid crystal layer formed between the first substrate and the second substrate, wherein the overcoat except at the contact hole has the same planar shape as the pixel electrode. Accordingly, deterioration of the liquid crystal layer may be prevented in the liquid crystal display and a pattern of a pixel electrode may be easily formed.
Abstract:
A display apparatus including a first substrate including a pixel area; a gate line disposed on the first substrate; a data line disposed on the first substrate and insulated from the gate line; an insulating layer pattern interposed between the gate line and the data line in an area where the gate line and the data line overlap; a gate insulating layer interposed between the gate line and the data line; a pixel electrode disposed in the pixel area; and a second substrate facing the first substrate.
Abstract:
A display panel and a method of manufacturing the same in which a storage electrode is formed on a first base substrate, and an insulating layer is formed on the first base substrate to cover the storage electrode. The insulating layer is recessed directly above the storage electrode. A pixel electrode faces the storage electrode and is formed on the insulating layer. A protruding portion is formed on a second base substrate facing the first base substrate. The protruding portion protrudes toward a concaved portion of the insulating layer.
Abstract:
A color filter substrate includes a substrate, a black matrix disposed on the substrate, a color filter on a sub-pixel area partitioned by the black matrix, a common electrode disposed on the color filter to receive a common voltage, and an anti-reflective layer configured to prevent the reflection of light in the color filter substrate.
Abstract:
Embodiments of the present invention relate to a liquid crystal display. According to an embodiment, a liquid crystal display including a plurality of pixels arranged in a matrix according to an exemplary embodiment of the present invention includes: a plurality of pixel electrodes respectively including a first sub-pixel electrode and a second sub-pixel electrode; a plurality of first thin film transistors connected to the first sub-pixel electrodes; a plurality of second thin film transistors connected to the second sub-pixel electrodes; a plurality of third thin film transistors connected to the second sub-pixel electrodes; a plurality of first gate lines connected to the first and second thin film transistors; a plurality of data lines connected to the first and second thin film transistors; a plurality of second gate lines connected to the third thin film transistors; and a step-down capacitor connected between the drain electrode of the third thin film transistor and the first gate line.
Abstract:
A base substrate of a color filter substrate includes a display region and a peripheral region. The display region includes a pixel area having a first unit area, a second unit area, and a third unit area that are disposed adjacent to each other, and a blocking area that surrounds peripheral portions of each of the first, second, and third unit areas. A first color filter is formed in the first unit area. A second color filter is formed in the second unit area and the blocking area. A third color filter is formed in the third unit area and on the second color filter in the blocking area. Therefore, the second and third color filters overlap each other so that light is blocked.
Abstract:
An exemplary embodiment of the present invention provides a method for manufacturing a solar cell, which includes: forming a first semiconductor layer on a first surface of a light-absorbing layer, forming a second semiconductor layer on a second surface of the light-absorbing layer, forming a first transparent conductive layer having one X-ray diffraction peak on the first semiconductor layer in a first direction, forming a second transparent conductive layer having one X-ray diffraction peak on the second semiconductor layer in a second direction opposite to the first direction, forming a first electrode on the first transparent conductive layer in the first direction and forming a second electrode on the second transparent conductive layer in the second direction, in which at least one of the first transparent conductive layer and the second transparent conductive layer is formed at about 180 to about 220° C., at least one of the first transparent conductive layer and the second transparent conductive layer includes oxidized tungsten, and 2θ is 30.2±0.1 degrees in the X-ray diffraction peak.
Abstract:
In an array substrate, the array substrate includes an insulation member in each pixel area and a color filter layer that surrounds each insulation member. The color filter layer includes color filters having two or more colors that are different from each other, and a color filter is formed in each pixel area. An insulation member is arranged in each pixel area and all the insulation members include the same material. The insulation members are partially removed in each pixel area to form contact holes having the same size.
Abstract:
The present disclosure relates to a thin film transistor array panel and a manufacturing method thereof. The method comprises: forming a thin film transistor on a substrate; forming a color filter adjacent to the thin film transistor and over the same substrate; depositing a first passivation layer on the color filter; coating a photosensitive film on the first passivation layer and exposing the photosensitive film to light using a first photomask to form a first photosensitive film pattern that comprises a first portion and a second portion that is thicker than the first portion, the first photosensitive film pattern exposing the first passivation layer around a circumference of the second portion; removing the exposed first passivation layer using the first photosensitive film pattern as an etch mask; blanket etching a whole surface of the first photosensitive film pattern until the first portion is removed to form a second photosensitive film pattern; depositing a conductive layer on the second photosensitive film pattern; and removing the second photosensitive film pattern to thereby selectively lift off portions of the conductive layer where a left behind portion forms a pixel electrode.
Abstract:
A color filter substrate includes a substrate, a black matrix disposed on the substrate, a color filter on a sub-pixel area partitioned by the black matrix, a common electrode disposed on the color filter to receive a common voltage, and an anti-reflective layer configured to prevent the reflection of light in the color filter substrate.