摘要:
A torque sensor which can detect instantaneous output torque of the engine is disposed on the output shaft of the engine, and the output signal thereof is frequency-analyzed to extract a half synchronous frequency component having a frequency equals to a half of the number of the revolutions of the engine per second and a synchronous frequency component having a frequency equals to the number of the revolutions of the engine per second, the electronic control unit (ECU) of the engine determines the misfiring mode of the engine including the number of the misfiring cylinders and the interval thereof in the firing order of the engine based on the amplitude of the frequency components and the waveform thereof, then the ECU determines the misfiring cylinders based on the determined misfiring mode and the phase angle of the frequency components of the torque sensor relative to a reference crank angle signal.
摘要:
A physical quantity detecting apparatus for detecting a physical quantity of an object of measurement. The position of movement of an object of measurement is divided into a given number of segments in advance. The output of a physical quantity sensor for detecting a physical quantity of the object of measurement is calculated on the basis of a correction operation expression which has an independent coefficient group for each segment so as to correct the offset component and the sensitivity. Thus, a physical quantity such as a transmitted torque is detected with high accuracy at real time without being influenced by the fluctuations of the offset output and the sensitivity depending on the position of rotation. The correction operation may also be performed using the temperature dependence function of the offset signal and the temperature dependence function of the sensitivity, thereby enabling the accurate measurement of the physical quantity without the influence of the temperature change.
摘要:
A torque measuring apparatus including a magnetic detection device for non-contact measuring strains in a rotating shaft of ferromagnetic material which is adapted to transmit torques, the detected strains being used to determine the levels of transmitted torques, the magnetic detection device including an exciting coil device wound around the outer periphery of the rotating shaft and adapted to magnetize the rotating shaft in its axial direction; a detecting core ring device in the form of an integral unit which includes a plurality of detecting cores arranged around the circumferential area of the rotating shaft to be magnetized equidistantly to form a ring, each of the detecting cores forming an independent magnetic circuit between the detecting core and the rotating shaft; and at least one magnetic detecting element for detecting a variable magnetic flux in each of the detecting cores depending on the level of the transmitted torque; whereby the strains in the rotating shaft can be non-contact measured based on the sum of detection signals from the magnetic sensors each of which is formed by each of the detecting cores and the corresponding magnetic detecting elements.
摘要:
A magnetic sensor element 1 includes a substrate 10, a conductive layer 12 of a conductive material, and a magnetic layer 11 of a magnetic material, which encloses the conductive layer 12. AC is applied to the element from a drive power source 50, and a detector 60 detects an impedance change due to an external magnetic field. The magnetic layer 11 is bestowed with magnetic anisotropy in a direction orthogonal to the direction of energization of the element 1. With the provision of the conductive layer 12 of conductive material and also with magnetic anisotropy imparted to the magnetic layer 1, the element 1 may be made a low resistivity element. A reactance change and a resistance change of the element due to an external magnetic field change, thus can be effectively detected in drive frequencies two orders of magnitude lower than in the case of a prior art magnetic sensor element. The magnetic anisotropy of the magnetic layer 11 is controlled to prevent magnetic field detection dynamic range variations with drive frequency.
摘要:
A torque detecting apparatus for measuring the amount of magnetostriction of a rotary magnetic material which transmits torque by means of a magnetic sensor, and detecting the transmitted torque on the basis of the measured amount of magnetostriction. The apparatus comprises a magnetic sensor for measuring the amount of magnetostriction of the rotary magnetic material, a demagnetization coil which is opposed to the rotary magnetic material so as to restore the rotary magnetic material magnetized by a disturbing magnetic field to the state of zero magnetization, a demagnetization circuit for applying an oscillating current to the demagnetization coil so as to generate in the rotary magnetic material a periodic damping oscillating magnetic field having the maximum value larger than the coercive force of the rotary magnetic material; and a trigger circuit for outputting a drive timing signal for the demagnetization circuit. The transmitted torque is detected without being influenced by a disturbing magnetic field.
摘要:
Provided is a semiconductor device capable of reducing a temperature-dependent variation of a current sense ratio and accurately detecting current. In the semiconductor device, at least one of an impurity concentration and a thickness of each semiconductor layer is adjusted such that a value calculated by a following equation is less than a predetermined value: [ ∑ i = 1 n ( R Mi × k Mi ) - ∑ i = 1 n ( R Si × k Si ) ] / ∑ i = 1 n ( R Mi × k Mi ) where a temperature-dependent resistance changing rate of an i-th semiconductor layer (i=1 to n) of the main element domain is RMi; a resistance ratio of the i-th semiconductor layer of the main element domain relative to the entire main element domain is kMi; a temperature-dependent resistance changing rate of the i-th semiconductor layer of the sense element domain is RSi; and a resistance ratio of the i-th semiconductor layer of the sense element domain to the entire sense element domain is kSi.
摘要:
An object is to miniaturize booster coils used in a vehicle-mounted booster converter. In the design method for a vehicle-mounted multi-phase converter including multiple booster coils and a switching circuit for generating an induced electromotive force at each booster coil by switching of current flowing to each booster coil for applying an output voltage, based on an input voltage and the induced electromotive force generated at each booster coil, to a vehicle drive circuit, a coupling factor indicating the extent by which the induced electromotive force in one of multiple booster coils contributes to the voltage between terminals of another booster coil is determined on the basis of a relationship between the coupling factor and current ripple component of each booster coil.
摘要:
Provided is a semiconductor device capable of reducing a temperature-dependent variation of a current sense ratio and accurately detecting current In the semiconductor device, at least one of an impurity concentration and a thickness of each semiconductor layer is adjusted such that a value calculated by a following equation is less than a predetermined value: [ ∑ i = 1 n ( R Mi × k Mi ) - ∑ i = 1 n ( R Si × k Si ) ] / ∑ i = 1 n ( R Mi × k Mi ) where a temperature-dependent resistance changing rate of an i-th semiconductor layer (i=1 to n) of the main element domain is RMi; a resistance ratio of the i-th semiconductor layer of the main element domain relative to the entire main element domain is kMi; a temperature-dependent resistance changing rate of the i-th semiconductor layer of the sense element domain is RSi; and a resistance ratio of the i-th semiconductor layer of the sense element domain to the entire sense element domain is kSi.
摘要:
Provided is a semiconductor device capable of reducing a temperature-dependent variation of a current sense ratio and accurately detecting current In the semiconductor device, at least one of an impurity concentration and a thickness of each semiconductor layer is adjusted such that a value calculated by a following equation is less than a predetermined value: [ ∑ i = 1 n ( R Mi × k Mi ) - ∑ i = 1 n ( R Si × k Si ) ] / ∑ i = 1 n ( R Mi × k Mi ) where a temperature-dependent resistance changing rate of an i-th semiconductor layer (i=1 to n) of the main element domain is RMi; a resistance ratio of the i-th semiconductor layer of the main element domain relative to the entire main element domain is kMi; a temperature-dependent resistance changing rate of the i-th semiconductor layer of the sense element domain is RSi; and a resistance ratio of the i-th semiconductor layer of the sense element domain to the entire sense element domain is kSi.
摘要:
An object is to miniaturize booster coils used in a vehicle-mounted booster converter. In the design method for a vehicle-mounted multi-phase converter including multiple booster coils and a switching circuit for generating an induced electromotive force at each booster coil by switching of current flowing to each booster coil for applying an output voltage, based on an input voltage and the induced electromotive force generated at each booster coil, to a vehicle drive circuit, a coupling factor indicating the extent by which the induced electromotive force in one of multiple booster coils contributes to the voltage between terminals of another booster coil is determined on the basis of a relationship between the coupling factor and current ripple component of each booster coil.