Abstract:
Disclosed are a current zero-cross detection device, zero-cross current signal acquisition circuit and totem pole bridgeless circuit system. The current zero-cross detection device includes a current transformer, first sampling switch, second sampling switch, sampling resister, comparator. The current transformer includes a primary winding and a secondary winding; the primary winding is connected to a circuit to be detected; two ends of the secondary winding are connected respectively to drain electrodes of the first and second sampling switches; source electrodes of first and second sampling switches are connected to ground; two ends of the sampling resistor are connected respectively to the drain electrode and source electrode of the second sampling switch; the negative input end of the comparator is connected to the drain electrode of the second sampling switch, its positive input end is connected to a reference voltage; the first and second sampling switches are in ON or OFF state.
Abstract:
The present disclosure discloses a power conversion apparatus and a method for configuring the same. The power conversion apparatus includes a boost unit and at least two power conversion units; each of the power conversion units has two input ends; an input end of the boost unit is connected with one end of an alternating-current power supply, and an output end of the boost unit is connected with one input end of a first power conversion unit of the plurality of power conversion units; one input end of a last power conversion unit of the plurality of power conversion units is connected with the other end of the alternating-current power supply; and the input ends of the plurality of power conversion units are connected in series, and the output ends of the plurality of power conversion units are connected in parallel.
Abstract:
A synchronous rectifier driving method, a synchronous rectifier circuit and a switching power supply are provided, and the method includes: detecting an output current in a secondary winding of a transformer unit, and generating a first driving signal according to the output current; obtaining a protection signal according to a voltage signal of the secondary winding of the transformer unit in a synchronous rectifier circuit; correcting the first driving signal by using the obtained protection signal to obtain a second driving signal; and driving a rectifier in the synchronous rectifier circuit according to the second driving signal.
Abstract:
A method and device for detecting inductor current of a PFC circuit are disclosed, which relates to the field of power supply technology. The method includes: detecting a voltage on a boost inductor of a critical-conduction mode PFC circuit, and obtaining an inductor voltage detection signal (S1); converting the inductor voltage detection signal into a voltage signal whose waveform is consistent with a current waveform of the inductor to serve as an inductor current detection signal, to perform loop protection on the PFC circuit or perform over-current protection on the PFC circuit by using the inductor current detection signal (S2).
Abstract:
Provided is apparatus and a method for driving synchronous rectifiers, which relate to the field of power supplies for communications. The apparatus includes: detection circuits, wherein each of the detection circuits is configured to detect drain and source voltages of one of synchronous rectifiers to obtain a detection signal for indicating a current direction in the one of the synchronous rectifiers; an isolated driving circuit, configured to generate isolated driving signals for driving the synchronous rectifiers according to the detection signals output by the detection circuits; and the synchronous rectifiers, configured to synchronously rectify input signals from a main transformer by using the isolated driving signals. The present disclosure can obtain the isolated driving signals of the synchronous rectifiers simply and effectively, and has a superior protective feature in case of shoot-through and other abnormalities.
Abstract:
A controlling method and device for a wireless power transfer system, wherein the wireless power transfer system includes a transmitting component and a receiving component, and further includes a contactless transformer & compensation (CT&C) circuit, and the controlling method includes: obtaining positional relationship information of the transmitting component and the receiving component; adjusting the number of coil turns of the transmitting component based on the positional relationship information, and making conditions of a CT&C voltage gain characteristic and an input impedance characteristic after a charging inverter bridge of the wireless power transfer system meet a charging condition. The abovementioned technical solution can provide a protection for a stable operation of the wireless power transfer system with a non-mechanical adjusting device, and the wireless charging can be achieved without using a mechanical adjusting device to align and range