摘要:
A modular ultrafast pulse laser system is constructed of individually pre-tested components manufactured as modules. The individual modules include an oscillator, pre-amplifier and power amplifier stages, a non-linear amplifier, and a stretcher and compressor. The individual modules can typically be connected by means of simple fiber splices.
摘要:
The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
摘要:
The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
摘要:
By compensating polarization mode-dispersion as well chromatic dispersion in photonic crystal fiber pulse compressors, high pulse energies can be obtained from all-fiber chirped pulse amplification systems. By inducing third-order dispersion in fiber amplifiers via self-phase modulation, the third-order chromatic dispersion from bulk grating pulse compressors can be compensated and the pulse quality of hybrid fiber/bulk chirped pulse amplification systems can be improved. Finally, by amplifying positively chirped pulses in negative dispersion fiber amplifiers, low noise wavelength tunable seed source via anti-Stokes frequency shifting can be obtained.
摘要:
An electronic circuit for controlling a laser system consisting of a pulse source and high power fiber amplifier is disclosed. The circuit is used to control the gain of the high power fiber amplifier system so that the amplified output pulses have predetermined pulse energy as the pulse width and repetition rate of the oscillator are varied. This includes keeping the pulse energy constant when the pulse train is turned on. The circuitry is also used to control the temperature of the high power fiber amplifier pump diode such that the wavelength of the pump diode is held at the optimum absorption wavelength of the fiber amplifier as the diode current is varied. The circuitry also provides a means of protecting the high power fiber amplifier from damage due to a loss of signal from the pulse source or from a pulse-source signal of insufficient injection energy.
摘要:
A chirped pulse amplifier (CPA) system having a mode-locked laser and a high-speed pulse selector, wherein the pulse selector modulates output pulses based upon an applied modulation voltage. A pulse selector may be an integrated electro-optic modulator, for example a LiNbO3 modulator, or an electro-absorption modulator. Difficulties related to free-space alignment and operational stability of some prior designs are reduced or eliminated. Fiber coupling generally simplifies beam delivery and alignment. Some embodiments include an erbium fiber (or erbium-ytterbium) based CPA system operating at a wavelength of approximately 1550 nanometers. Similar performance can be obtained at other wavelengths, for example a 1.06 .micrometer Yb-doped fiber system. Moreover, high amplification and peak intensity at the output may be achieved while avoiding non-linear effects in the pulse selector, thereby providing for high intensity picosecond or femtosecond operation.
摘要:
A chirped pulse amplifier (CPA) system having a mode-locked laser and a high-speed pulse selector, wherein the pulse selector modulates output pulses based upon an applied modulation voltage. A pulse selector may be an integrated electro-optic modulator, for example a LiNbO3 modulator, or an electro-absorption modulator. Difficulties related to free-space alignment and operational stability of some prior designs are reduced or eliminated. Fiber coupling generally simplifies beam delivery and alignment. Some embodiments include an erbium fiber (or erbium-ytterbium) based CPA system operating at a wavelength of approximately 1550 nanometers. Similar performance can be obtained at other wavelengths, for example a 1.06 micrometer Yb-doped fiber system. Moreover, high amplification and peak intensity at the output may be achieved while avoiding non-linear effects in the pulse selector, thereby providing for high intensity picosecond or femtosecond operation.
摘要:
An erbium fiber (or erbium-ytterbium) based chirped pulse amplification system is illustrated. The use of fiber amplifiers operating in the telecommunications window enables the implementation of telecommunications components and telecommunications compatible assembly procedures with superior mechanical stability.
摘要:
A chirped pulse amplifier (CPA) system having a mode-locked laser and a high-speed pulse selector, wherein the pulse selector modulates output pulses based upon an applied modulation voltage. A pulse selector may be an integrated electro-optic modulator, for example a LiNbO3 modulator, or an electro-absorption modulator. Difficulties related to free-space alignment and operational stability of some prior designs are reduced or eliminated. Fiber coupling generally simplifies beam delivery and alignment. Some embodiments include an erbium fiber (or erbium-ytterbium) based CPA system operating at a wavelength of approximately 1550 nanometers. Similar performance can be obtained at other wavelengths, for example a 1.06 .micrometer Yb-doped fiber system. Moreever, high amplification and peak intensity at the output may be achieved while avoiding non-linear effects in the pulse selector, thereby providing for high intensity picosecond or femtosecond operation.
摘要:
A chirped pulse amplifier (CPA) system having a mode-locked laser and a high-speed pulse selector, wherein the pulse selector modulates output pulses based upon an applied modulation voltage. A pulse selector may be an integrated electro-optic modulator, for example a LiNbO3 modulator, or an electro-absorption modulator. Difficulties related to free-space alignment and operational stability of some prior designs are reduced or eliminated. Fiber coupling generally simplifies beam delivery and alignment. Some embodiments include an erbium fiber (or erbium-ytterbium) based CPA system operating at a wavelength of approximately 1550 nanometers. Similar performance can be obtained at other wavelengths, for example a 1.06 micrometer Yb-doped fiber system. Moreover, high amplification and peak intensity at the output may be achieved while avoiding non-linear effects in the pulse selector, thereby providing for high intensity picosecond or femtosecond operation.