摘要:
Transistor devices having nanoscale material-based channels (e.g., carbon nanotube or graphene channels) and techniques for the fabrication thereof are provided. In one aspect, a transistor device is provided. The transistor device includes a substrate; an insulator on the substrate; a local bottom gate embedded in the insulator, wherein a top surface of the gate is substantially coplanar with a surface of the insulator; a local gate dielectric on the bottom gate; a carbon-based nanostructure material over at least a portion of the local gate dielectric, wherein a portion of the carbon-based nanostructure material serves as a channel of the device; and conductive source and drain contacts to one or more portions of the carbon-based nanostructure material on opposing sides of the channel that serve as source and drain regions of the device.
摘要:
Transistor devices having nanoscale material-based channels (e.g., carbon nanotube or graphene channels) and techniques for the fabrication thereof are provided. In one aspect, a transistor device is provided. The transistor device includes a substrate; an insulator on the substrate; a local bottom gate embedded in the insulator, wherein a top surface of the gate is substantially coplanar with a surface of the insulator; a local gate dielectric on the bottom gate; a carbon-based nanostructure material over at least a portion of the local gate dielectric, wherein a portion of the carbon-based nanostructure material serves as a channel of the device; and conductive source and drain contacts to one or more portions of the carbon-based nanostructure material on opposing sides of the channel that serve as source and drain regions of the device.
摘要:
A method and an apparatus for doping a graphene or nanotube thin-film field-effect transistor device to improve electronic mobility. The method includes selectively applying a dopant to a channel region of a graphene or nanotube thin-film field-effect transistor device to improve electronic mobility of the field-effect transistor device.
摘要:
Techniques for increasing conductivity of graphene films by chemical doping are provided. In one aspect, a method for increasing conductivity of a graphene film includes the following steps. The graphene film is formed from one or more graphene sheets. The graphene sheets are exposed to a solution having a one-electron oxidant configured to dope the graphene sheets to increase a conductivity thereof, thereby increasing the overall conductivity of the film. The graphene film can be formed prior to the graphene sheets being exposed to the one-electron oxidant solution. Alternatively, the graphene sheets can be exposed to the one-electron oxidant solution prior to the graphene film being formed. A method of fabricating a transparent electrode on a photovoltaic device from a graphene film is also provided.
摘要:
A method of forming a structure having selectively placed carbon nanotubes, a method of making charged carbon nanotubes, a bi-functional precursor, and a structure having a high density carbon nanotube layer with minimal bundling. Carbon nanotubes are selectively placed on a substrate having two regions. The first region has an isoelectric point exceeding the second region's isoelectric point. The substrate is immersed in a solution of a bi-functional precursor having anchoring and charged ends. The anchoring end bonds to the first region to form a self-assembled monolayer having a charged end. The substrate with charged monolayer is immersed in a solution of carbon nanotubes having an opposite charge to form a carbon nanotube layer on the self-assembled monolayer. The charged carbon nanotubes are made by functionalization or coating with an ionic surfactant.
摘要:
A method and an apparatus for doping at least one of a graphene and a nanotube thin-film transistor field-effect transistor device to decrease contact resistance with a metal electrode. The method includes selectively applying a dopant to a metal contact region of at least one of a graphene and a nanotube field-effect transistor device to decrease the contact resistance of the field-effect transistor device.
摘要:
A composition and method for forming a field effect transistor with a stable n-doped nano-component. The method includes forming a gate dielectric on a gate, forming a channel comprising a nano-component on the gate dielectric, forming a source over a first region of the nano-component, forming a drain over a second region of the nano-component to form a field effect transistor, and exposing a portion of a nano-component of a field effect transistor to dihydrotetraazapentacene to produce a stable n-doped nano-component, wherein dihydrotetraazapentacene is represented by the formula: wherein in the dihydrotetraazapentacene chemical structure, each of R1, R2, R3, and R4 can be hydrogen, an alkyl group of C1 to C16 carbons, an alkoxy group, an alkylthio group, a trialkylsilane group, a hydroxymethyl group, a carboxylic acid group or a carboxylic ester group.
摘要:
Techniques for increasing conductivity of graphene films by chemical doping are provided. In one aspect, a method for increasing conductivity of a graphene film includes the following steps. The graphene film is formed from one or more graphene sheets. The graphene sheets are exposed to a solution having a one-electron oxidant configured to dope the graphene sheets to increase a conductivity thereof, thereby increasing the overall conductivity of the film. The graphene film can be formed prior to the graphene sheets being exposed to the one-electron oxidant solution. Alternatively, the graphene sheets can be exposed to the one-electron oxidant solution prior to the graphene film being formed. A method of fabricating a transparent electrode on a photovoltaic device from a graphene film is also provided.
摘要:
A method of forming a structure having selectively placed carbon nanotubes, a method of making charged carbon nanotubes, a bi-functional precursor, and a structure having a high density carbon nanotube layer with minimal bundling. Carbon nanotubes are selectively placed on a substrate having two regions. The first region has an isoelectric point exceeding the second region's isoelectric point. The substrate is immersed in a solution of a bi-functional precursor having anchoring and charged ends. The anchoring end bonds to the first region to form a self-assembled monolayer having a charged end. The substrate with charged monolayer is immersed in a solution of carbon nanotubes having an opposite charge to form a carbon nanotube layer on the self-assembled monolayer. The charged carbon nanotubes are made by functionalization or coating with an ionic surfactant.
摘要:
Techniques for reducing the resistivity of carbon nanotube and graphene materials are provided. In one aspect, a method of producing a doped carbon film having reduced resistivity is provided. The method includes the following steps. A carbon material selected from the group consisting of: a nanotube, graphene, fullerene and pentacene is provided. The carbon material and a dopant solution comprising an oxidized form of ruthenium bipyridyl are contacted, wherein the contacting is carried out under conditions sufficient to produce the doped carbon film having reduced resistivity.