摘要:
Embodiments of the present invention generally relate to methods for forming silicon epitaxial layers on semiconductor devices. The methods include forming a silicon epitaxial layer on a substrate at increased pressure and reduced temperature. The silicon epitaxial layer has a phosphorus concentration of about 1×1021 atoms per cubic centimeter or greater, and is formed without the addition of carbon. A phosphorus concentration of about 1×1021 atoms per cubic centimeter or greater increases the tensile strain of the deposited layer, and thus, improves channel mobility. Since the epitaxial layer is substantially free of carbon, the epitaxial layer does not suffer from film formation and quality issues commonly associated with carbon-containing epitaxial layers.
摘要:
Apparatus for selectively depositing an epitaxial layer are provided herein. In some embodiments, an apparatus for processing a substrate may include a process chamber having a substrate support disposed therein; a deposition gas source coupled to the process chamber; an etching gas source coupled to the process chamber, the etching gas source including a hydrogen and halogen gas source and a germanium gas source; an energy control source to maintain the substrate at a temperature at up to 600 degrees Celsius; and an exhaust system coupled to the process chamber to control the pressure in the process chamber.
摘要:
Embodiments of the present invention generally relate to methods of forming epitaxial layers and devices having epitaxial layers. The methods generally include forming a first epitaxial layer including phosphorus and carbon on a substrate, and then forming a second epitaxial layer including phosphorus and carbon on the first epitaxial layer. The second epitaxial layer has a lower phosphorus concentration than the first epitaxial layer, which allows for selective etching of the second epitaxial layer and undesired amorphous silicon or polysilicon deposited during the depositions. The substrate is then exposed to an etchant to remove the second epitaxial layer and undesired amorphous silicon or polysilicon. The carbon present in the first and second epitaxial layers reduces phosphorus diffusion, which allows for higher phosphorus doping concentrations. The increased phosphorus concentrations reduce the resistivity of the final device. The devices include epitaxial layers having a resistivity of less than about 0.381 milliohm-centimeters.
摘要:
Embodiments of the present invention generally relate to methods for forming silicon epitaxial layers on semiconductor devices. The methods include forming a silicon epitaxial layer on a substrate at increased pressure and reduced temperature. The silicon epitaxial layer has a phosphorus concentration of about 1×1021 atoms per cubic centimeter or greater, and is formed without the addition of carbon. A phosphorus concentration of about 1×1021 atoms per cubic centimeter or greater increases the tensile strain of the deposited layer, and thus, improves channel mobility. Since the epitaxial layer is substantially free of carbon, the epitaxial layer does not suffer from film formation and quality issues commonly associated with carbon-containing epitaxial layers.
摘要:
Methods for formation of epitaxial layers containing n-doped silicon are disclosed. Specific embodiments pertain to the formation and treatment of epitaxial layers in semiconductor devices, for example, Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices. In specific embodiments, the formation of the n-doped epitaxial layer involves exposing a substrate in a process chamber to deposition gases including a silicon source, a carbon source and an n-dopant source. An epitaxial layer may have considerable tensile stress which may be created in a significant amount by a high concentration of n-dopant. A layer having n-dopant may also have substitutional carbon. Phosphorus as an n-dopant with a high concentration is provided. A substrate having an epitaxial layer with a high level of n-dopant is also disclosed.
摘要:
Methods for selectively depositing an epitaxial layer are provided herein. In some embodiments, providing a substrate having a monocrystalline first surface and a non-monocrystalline second surface; exposing the substrate to a deposition gas to deposit a layer on the first and second surfaces, the layer comprising a first portion deposited on the first surfaces and a second portion deposited on the second surfaces; and exposing the substrate to an etching gas comprising a first gas comprising hydrogen and a halogen and a second gas comprising at least one of a Group III, IV, or V element to selectively etch the first portion of the layer at a slower rate than the second portion of the layer. In some embodiments, the etching gas comprises hydrogen chloride (HCl) and germane (GeH4).
摘要:
Methods for formation of epitaxial layers containing n-doped silicon are disclosed. Specific embodiments pertain to the formation and treatment of epitaxial layers in semiconductor devices, for example, Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices. In specific embodiments, the formation of the n-doped epitaxial layer involves exposing a substrate in a process chamber to deposition gases including a silicon source, a carbon source and an n-dopant source. An epitaxial layer may have considerable tensile stress which may be created in a significant amount by a high concentration of n-dopant. A layer having n-dopant may also have substitutional carbon. Phosphorus as an n-dopant with a high concentration is provided. A substrate having an epitaxial layer with a high level of n-dopant is also disclosed.
摘要:
Methods for formation of epitaxial layers containing n-doped silicon are disclosed, including methods for the formation and treatment of epitaxial layers in semiconductor devices, for example, Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices. Formation of the n-doped epitaxial layer involves exposing a substrate in a process chamber to deposition gases including a silicon source, a carbon source and an n-dopant source at a first temperature and pressure and then exposing the substrate to an etchant at a second higher temperature and a higher pressure than during deposition.
摘要:
Methods for formation of epitaxial layers containing n-doped silicon are disclosed, including methods for the formation and treatment of epitaxial layers in semiconductor devices, for example, Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices. Formation of the n-doped epitaxial layer involves exposing a substrate in a process chamber to deposition gases including a silicon source, a carbon source and an n-dopant source at a first temperature and pressure and then exposing the substrate to an etchant at a second higher temperature and a higher pressure than during deposition.
摘要:
Embodiments of the present invention generally relate to methods of forming epitaxial layers and devices having epitaxial layers. The methods generally include forming a first epitaxial layer including phosphorus and carbon on a substrate, and then forming a second epitaxial layer including phosphorus and carbon on the first epitaxial layer. The second epitaxial layer has a lower phosphorus concentration than the first epitaxial layer, which allows for selective etching of the second epitaxial layer and undesired amorphous silicon or polysilicon deposited during the depositions. The substrate is then exposed to an etchant to remove the second epitaxial layer and undesired amorphous silicon or polysilicon. The carbon present in the first and second epitaxial layers reduces phosphorus diffusion, which allows for higher phosphorus doping concentrations. The increased phosphorus concentrations reduce the resistivity of the final device. The devices include epitaxial layers having a resistivity of less than about 0.381 milliohm-centimeters.