摘要:
The present invention provides improved methods that allow accurate monitoring and/or control of temperature changes in a microfluidic environment. An advantage of the present invention is that the temperature can be monitored and/or controlled at any location within a microfluidic device, especially where a preparation step, an amplification step and/or a detection step is performed. The invention further provides improved microfluidic devices for practicing the methods disclosed and claimed herein.
摘要:
A pathogen detection device is provided. The pathogen detection device may include a pathogen detector circuit configured to detect a target analyte in a patient sample, determine the presence of a pathogen from the target analyte, and generate a detection result including the identity of the pathogen and resistance genes (if any); and a decision support generator circuit configured to generate decision support information for the pathogen by application of user configurable rules to the detection result, wherein each of the configurable rules include a logic expression that indicates the corresponding decision support information of the rule to be included in the detection report.
摘要:
Disclosed are methods of measuring moisture. Specifically, methods of measuring moisture on dry or nearly dry surfaces using an electrochemical sensor are disclosed. The method comprises applying a coating comprising an electrolyte to an electrode wherein water in the air can permeate the coating, applying a voltage to the electrode, detecting a current and, determining if the current indicates the presence of moisture. As a voltage is applied, oxygen in the water is reduced and produces a measurable signal. The method includes measuring the amount of or decrease of dissolved oxygen (in the form of water) at the surface of the electrode over time. Reduction of oxygen acts as a surrogate for water/moisture and, as such, the dryness of the surface of the electrode is calculated based on a predetermined relationship between current and dissolved oxygen (in the form of water).
摘要:
Disclosed are methods of measuring moisture. Specifically, methods of measuring moisture on dry or nearly dry surfaces using an electrochemical sensor are disclosed. The method comprises applying a coating comprising an electrolyte to an electrode wherein water in the air can permeate the coating, applying a voltage to the electrode, detecting a current and, determining if the current indicates the presence of moisture. As a voltage is applied, oxygen in the water is reduced and produces a measurable signal. The method includes measuring the amount of or decrease of dissolved oxygen (in water) at the surface of the electrode over time. Reduction of oxygen acts as a surrogate for water/moisture and, as such, the dryness of the surface of the electrode is calculated based on a predetermined relationship between current and dissolved oxygen (in water). The method is also adapted to measure other target chemicals in a coating.
摘要:
The invention, depending on aspect and embodiment, relates to capture probe controls, and capture and signal probe configurations and combinations of configurations that can facilitate accurate and efficient multiplex analyte detection, especially in electrochemical detection schemes.
摘要:
Disclosed are devices, systems and methods for assessing the integrity of electrical connections between elements of interfacing electronic devices. In some aspects, a system includes an analysis device having electronics that interface with an assay cartridge inserted into the analysis device, wherein the analysis device is configured to conduct a preflight test in which impedance values for each circuit between the assay cartridge and analysis device are rearranged and assessed to determine the electrical connection integrity of the assay cartridge to the analysis device prior to implementing the assay.
摘要:
A sample-containing device configured to be placed into a sample processing instrument for performing a process on a sample contained in the device includes redundant identification features, such as machine-readable tags. A first machine-readable information tag is read before the device is placed in the instrument, and a second machine-readable information tag is read after the device is in the instrument. Information read from the two tags is compared to determine if there is proper correspondence between the information read from the tags to ensure that the correct sample processing device was placed in the instrument.
摘要:
The present disclosure relates to methods and devices for amplifying a plurality of targets in a single PCR run while distinguishing between clinically relevant amplification and amplification from other sources such as from background contamination. The methods and devices further enable discrimination between gram-positive, gram-negative and fungal infections as wells as identify antimicrobial resistance genes. When applying the methods and devices of the invention, the species or genus of an infection(s), and genus of a fungal co-infection(s) or category of bacterial (gram-positive or negative) co-infection(s) are identified. Species identification of co-infections can also be achieved. Further, when applying the methods and devices of the invention, organisms which are likely to be contaminating organisms from a blood draw are identified.
摘要:
In one embodiment, a diagnostic system includes an instrument coupled to a client device and having at least one sample processing bay. The diagnostic system has a software architecture including instrument software (ISW) associated with the instrument. The ISW receives an assay definition file (ADF) that has a control file and an assay analysis module (AAM) file. The processing bay prepares and senses the sample according to parameters in the OPUS file and then generates sensor scan data. The diagnostic system then analyzes the sensor scan data and prepares a report according to the AAM file.
摘要:
In one embodiment, a multiplex fluid processing cartridge includes a sample well, a deformable fluid chamber, a mixing well with a mixer disposed therein, a lysis chamber including a lysis mixer, an electrowetting grid for microdroplet manipulation, and electrosensor arrays configured to detect analytes of interest. An instrument for processing the cartridge is configured to receive the cartridge and to selectively apply thermal energy, magnetic force, and electrical connections to one or more discrete locations on the cartridge and is further configured to compress the deformable chamber(s) in a specified sequence.