摘要:
The present invention relates to a process for the production of a layer composition (10) with an electrically conductive layer (11), comprising the process steps: a) provision of a substrate (12) with a substrate surface (13); b) formation of a polymer layer (14) comprising an electrically conductive polymer (15) on at least a part of the substrate surface (13); c) application of a liquid stabilizer phase, comprising a stabilizer and a liquid phase, to the polymer layer (14) from process step b), wherein the stabilizer phase comprises less than 0.2 wt. %, based on the stabilizer phase, of the electrically conductive polymer, wherein the stabilizer is an aromatic compound with at least two OH groups, and a layer composition (10) and uses thereof.
摘要:
Capacitors comprising a dielectric at least partly covering the surface of an electrode material and forming an anode body are described. The anode body may be at least partly coated with a solid electrolyte comprising a conductive polymer. The capacitor comprises at least one polyglycerol, where the ratio of the amount of polyglycerol (Mpg) to the amount of conductive polymer (Mpolymer) in the capacitor is Mpg/Mpolymer>0.15, and the polyglycerol contains more than 50 wt. % of a mixture of tri- and tetraglycerol, based on the total weight of the polyglycerol. Processes for the production of a capacitor, an electronic circuit and use of a capacitor in a dispersion are also described.
摘要:
The invention relates to a method for producing electrolytic capacitors with low equivalent series resistance and low residual current, consisting of a solid electrolyte and an intermediate layer and an outer layer comprising conductive polymers, to electrolytic capacitors produced using this method and also to the use of electrolytic capacitors of this type.
摘要:
A method of manufacturing a lead connector for an implantable medical device including connecting proximal ends of a plurality of conductive wires to an inner surface of a corresponding ring contact, placing a distal frame over distal ends of each of conducive wire of the plurality of conductive wires, the distal ends passing through corresponding shafts in the distal frame from a rear face of the distal frame and extending beyond a front face of the distal frame, arranging the distal frame along with the conductive wires and corresponding ring contacts within a mold cavity, filling the mold cavity with a mold material, the mold material abutting the rear face of the distal frame, and removing a resulting lead connector from the mold cavity.
摘要:
One aspect relates to a housing for an active implantable medical device, whereby the housing, at least parts thereof, includes an electrically insulating ceramic material, and has at least one electrically conductive conducting element, whereby the at least one conducting element is set up to establish at least one electrically conductive connection between an internal space of the housing and an external space.One aspect provides the at least one conducting element to include at least one cermet, whereby the housing and the at least one conducting element are connected in a firmly bonded manner.
摘要:
One aspect relates to an electrical bushing for use in a housing of an implantable medical device. The electrical bushing includes at least one electrically insulating base body and at least one electrical conducting element. The electrical bushing includes a holding element to hold the electrical bushing in or on the housing. The conducting element is set-up to establish, through the base body, at least one electrically conductive connection between an internal space of the housing and an external space. The conducting element is hermetically sealed with respect to the base body. The at least one conducting element includes at least one cermet. The holding element is made, to at least 80% by weight with respect to the holding element, from a material selected from the group consisting of a metal from any of the subgroups IV, V, VI, VIII, IX, and X of the periodic system.
摘要:
One aspect provides a method of forming a feedthrough device for an implantable medical device. The method includes providing a bulk insulator having a longitudinal length extending between first and second end faces, and including one or more conducting elements extending therethrough between the first and second end faces, the bulk insulator having a perimeter surface along the longitudinal length, and depositing one of a metal, metal alloy, or cermet on the perimeter surface to form a ferrule directly thereon, wherein the ferrule can be joined to other components of the implantable medical device.
摘要:
The invention relates to a thick film conductive composition comprising metal particles wherein the specific surface area of the silver particles measured by BET according to ISO 9277 is equal to or more than 1.8 m2/g; manganese oxide; glass particles; and an organic vehicle.
摘要:
One aspect relates to an electrical bushing for use in a housing of an implantable medical device. The electrical bushing includes at least one electrically insulating base body and at least one electrical conducting element. The conducting element is set up to establish, through the base body, at least one electrically conductive connection between an internal space of the housing and an external space. The conducting element is hermetically sealed with respect to the base body. The at least one conducting element includes at least one cermet. The electrical bushing includes an electrical filter structure. The at least one conducting element forms at least one conducting section of an inductor of the filter structure.
摘要:
4′-epidaunorubicin hydrochloride is provided in a crystalline form which is stable and readily soluble. A process of producing the crystalline form includes crystallizing 4′-epidaunorubicin hydrochloride in a solvent system including (a) solvent A selected from C1 and C2 halogenated solvents and mixtures thereof, (b) solvent B selected from C1-C5 straight and branched alcohols and mixtures thereof, and (c) solvent C selected from C1-C5 straight and branched alcohols and mixtures thereof, wherein solvent C is selected to provide lower solubility to 4′-epidaunorubicin hydrochloride than solvent B. A method of producing an anthracycline using crystalline 4′-epidaunorubicin hydrochloride is also provided.