摘要:
An apparatus comprises a flexible woven structure including an egress and/or ingress location at an external surface of the flexible woven structure. A fiber optic sensor is embedded in the flexible woven structure to allow the fiber optic sensor to detect one or more of strain, temperature, vibration, acoustics, 3-dimensional shape and/or pressure on the flexible woven structure. The fiber optic sensor extends out of the flexible woven structure at the egress and/or ingress location for connection to a connector or a termination. First thread stitches fasten the fiber optic sensor and any protective coatings, tubing, or conduit to the external surface of the flexible woven structure near the egress and/or ingress location. An optional reinforcement patch may cover the egress and/or ingress location and a portion of fiber optic sensor that extends out of the flexible woven structure at the egress and/or ingress location. Second thread stitches fasten the reinforcement patch to the external surface of the flexible woven structure to protect the fiber optic sensor and reduce bending and stress at the egress/ingress location.
摘要:
Biological specimen recovery materials include cellulose acetate nanofibers that are capable of dissolution upon contact with a liquid comprising a dissolution effective amount (e.g., between about 1 to about 10M) guanidinium isothiocyanate (GITC). Kits containing the materials (e.g., in the form of a swab, filtration media or surface wipe) and a dissolution liquid containing the dissolution effective amount of guanidinium isothiocyanate (GITC) are also provided.
摘要:
A system for performing distributed measurements of in-situ stress includes an expandable element with at least one fiber optic sensor. The expandable element can be positioned at various depths in a hole in a substrate. A pressurizing device expands (and contracts) the expandable element when the expandable element is inserted in the hole in the substrate to exert pressure on the hole wall. A pressure sensor provides a sensor output indicative of a pressure applied to the hole wall by the expandable element. The fiber optic sensor and an optical interrogator measure strain along a length of the sensor in a continuous, high spatial resolution manner Based on the measured strain and pressure sensor output, the system determines various properties of the substrate such as, minimum principal stress, maximum principal stress, and/or principal stress direction associated with one or more fractures in the substrate, as well as substrate modulus.
摘要:
A high-speed interrogation system is provided for interferometric sensors, one example of which is an EFPI sensor, that operates based on spectral interference. The system uses a two mode operation that includes a lower speed, accurate absolute measurement mode and a higher speed, relative measurement mode. The system achieves greater overall measurement accuracy and speed than known sensor interrogation approaches.
摘要:
An optical interrogation system, e.g., an OFDR-based system, measures local changes of index of refraction of a medium contained within a light guiding tube and includes an optical interferometric interrogator, optical detection circuitry, and a data processor. The data processor initiates a sweep of the light source and guide light from an interrogating light source into a medium contained by a tube which restricts movement of particles provided into the tube, where the medium is subjected to a driving force that overcomes resistance to movement of particles through the medium in the tube. The optical interferometric interrogator provides an optical interference pattern associated with a group of particles having moved in the tube as a result of the driving force. Based on the optical interference pattern, the data processor identifies a current location of the group of particles in the tube.
摘要:
A composition comprising: a liposome having a bilayer structure, a gadofullerene having a high relaxivity, and an amphiphilic receptor ligand. In the composition, the gadofullerene is embedded in the bilayer structure of the liposome. In addition, a method for detecting atherosclerotic plaque in an animal using the composition is described.
摘要:
Described herein are methods for treating inflammatory disorders. The methods comprise administering to a subject in need thereof a therapeutically effective amount of a synthetically modified fullerene.
摘要:
Additive particles may be employed in sufficient amounts to impart superhydrophobicity to a coating system in which the additive particles are incorporated. The additive particles include carrier microparticles and a dense plurality of nanoparticles adhered to the surfaces of the carrier microparticles (e.g., preferably by electrostatic deposition or covalent bonding). The additive particles are advantageously incorporated into a coating material (e.g., a polymeric material) in amounts sufficient to render a substrate surface superhydrophobic when coated with the coating material. The substrate may be rigid (e.g., glass, ceramic or metal) or flexible (e.g., a polymeric film or sheet or a fabric). In some preferred embodiments, both the microparticle and nanoparticles are formed of silica and are surface treated with a hydrophobic treatment so as to impart superhydrophobic properties thereto. Especially preferred are particles treated with silicone fluid comprised of a polysiloxane and/or a perfluoro silane having between 1 and 40 carbon atoms.
摘要:
A digital pulsed phase locked loop (DPPLL) provides exact measurements of echo phase, time, and/or position delay as well as echo amplitude. These exact measurements provide better and more reliable results that directly benefit the many real world applications for the DPPLL. The DPPLL permits simultaneous tracking of multiple echo pulses and considerably improved echo selection and sampling.
摘要:
Ultrasonic pulse echo object classification is described. A broadband ultrasound transducer transmits a broadband ultrasound pulse towards the object and detecting an associated ultra sound echo of that pulse from the object. An ultrasound receiver receives the detected echo signal. A signal processor, coupled to the ultrasound receivers determines and analyzes a time duration parameter and a frequency parameter (and possibly one or more other parameters like amplitude and/or phase) of the detected echo signal and classifies the object as a solid or liquid or as gaseous based on the parameters of the detected echo signal.