Abstract:
An avionics switched full-duplex Ethernet communication Arinc 664p7 network (100) includes at least two independent elementary networks (N1, N2). Each elementary network includes one or more end systems (ESI) suitable to act as source end systems for data frames transmitted over the network, and one or more end systems (ES4) suitable to act as destination end systems for such data frames. Each elementary network further includes a switching function block (SW1, SW2) connected between the source (ESI) and destination (ES4) end systems. The Ethernet network is has one of the source (ESI), destination (ES4) end systems and the switching function block (SW1, SW2) includes timers (204) suitable to generate a common piece of timing information to be sent to the other devices of the elementary network in-order to enable the transmission of the data frames over the elementary network by one of the source end systems (ESI).
Abstract:
A quantum cryptographic key distribution system, including: an optical source, which generates a plurality of optical pulses; an optical beam splitter, which generates, starting from each optical pulse, a first and a second optical sub-pulse; a first and a second peripheral device; and an optical path having a first and a second end connected to the optical beam splitter, the optical path extending through the first and second peripheral devices and being traversed in opposite directions by the first and second optical sub-pulses. The peripheral device randomly phase shifts the second optical sub-pulse by a first phase, and the second peripheral device randomly phase shifts the first optical sub-pulse by a second phase. Furthermore, the optical path is such as to cause interference in the first optical beam splitter between the first and second optical sub-pulses, as a function of first and second phases.
Abstract:
A Mode S anti-reflection method for eliminating false tracks due to reflected replies in ground radar systems, wherein the information contribution of the replies (at the level of raw video) is analyzed with the aim of calculating the position of the reflectors. The possible presence of ADS-B reports can be used, otherwise it will be effectuated a geometrical analysis of the distribution of the replies and will be compared with the plot(s) extracted by the radar sensor. The possibility of correlating along time the moving of the plots, their place of origin and average duration of the tracks generated by them will allow to understand whether the plot is relevant to a reflection or not. In the case of “reflection”, a reflectors map is updated automatically in order to avoid the enabling of the initialization of the track in that area.
Abstract:
The invention regards an external vision and/or weapon aiming system (1) for a military land vehicle and/or a military naval unit. The system comprises: two sensors (11, 12) configured to capture video streams of a same external scene, each in a respective spectral band; an electronic processing unit (13) configured to insert a respective aiming reticle in the images of each captured video stream, thereby generating a corresponding pre-processed video stream, and to process the two pre-processed video streams; and a user interface (14) configured to display a video stream received from the electronic processing unit (13). The system is characterized in that the electronic processing unit (13) is configured to process the two pre-processed video streams by means of image enhancement and picture-in-picture functionalities, thereby generating first and second enhanced video streams.
Abstract:
The invention concerns a device in the domain of AESA (“Active Electronically Scanned Array”) systems required for e.g. radar multifunctional systems with communication capabilities and electronic/analysis countermeasures, providing a constructive element for the realization of modular active radiating panels, which are economic and scalable depending on the system needs, to be used on multi-roles and multi-domains platforms. The architecture according to the invention presents a so-called “tile” architecture and uses a multilayer configuration incorporating the radiating elements, the control and supply controls, the transmitting/receiving (T/R) modules, the cooling system by using vertical interconnections, having a low cost and high integration.
Abstract:
A system comprising: a SIP Proxy Server, and DMR Gateway(s) to interface the SIP Proxy Server with DMR Network(s) matching Private/professional Mobile Radio (PMR) features; each DMR Gateway is univocally assigned with a SIP ID and is designed to: interpret messages from the SIP Proxy Server to manage DMR signalling/data/voice features toward DMR Terminals, and initiate DMR features on account of DMR Terminals operating under it and make requests for DMR signalling/data/voice features toward destinations belonging to another Network; each DMR Gateway is designed to: transcode an over-the-air, manufacturer-specific DMR Terminal registration into a SIP REGISTER message to result in the SIP Proxy server perceiving and managing the DMR Terminal as a SIP User Agent; the SIP Proxy Server is designed to manage: DMR signalling features, including voice call set-up, and DMR data features using the SIP MESSAGE method, and/or DMR signalling/data/voice group features.
Abstract:
A multi-role or multi-function system operable to perform a multi-role or a multi-function and configured to dynamically allocate requisite resources for performing antenna functions during a frame interval of the multi-role or the multi-function by determining whether the antenna functions are completely performable in the frame interval, based on a time-sharing resource allocation procedure; and if not, allocating the requisite resources for performing the antenna functions during the frame interval, based on a time-sharing resource allocation procedure and an antenna-sharing resource allocation procedure.
Abstract:
A communication method of the SMF type for a network of nodes including a multicast group. The method includes the steps, performed by a first node, of: determining a set of respective multipoint relays; determining the nodes for which the first node is a multipoint relay; determining a routing table including identifiers of destination nodes and corresponding identifiers of next-hop nodes; receiving a multicast packet sent from a sending node, where the first node is a multipoint relay; checking if, for each node identifier of the multicast group, the entry in the routing table that includes a destination node identifier corresponding to the node identifier of the multicast group contains a next-hop node identifier that corresponds to the sending node, and if the counter contained in the multicast packet respects a relation with a limit; and determining whether to retransmit the multicast packet, on the basis of the outcome of the checking step.
Abstract:
The disclosure concerns an external vision and/or weapon aiming and firing system for a military land vehicle and/or a military aircraft and/or a military naval unit. The system comprises: a video capture device configured to capture a video stream of a scene outside the military land vehicle or the military aircraft or the military naval unit; an electronic control unit configured to insert an aiming reticle in the images of said video stream, thereby generating a corresponding output video stream; and a user interface configured to display the output video stream generated by the electronic control unit. The electronic control unit is programmed to automatically change the color of the aiming reticle so as to maximize its contrast with respect to a predefined region of the images of the video stream centerd on said aiming reticle.
Abstract:
A high electron mobility transistor comprising: an epitaxial substrate comprising a semi-insulating substrate, a buffer layer and a barrier layer sequentially stacked; a first and a second current conducting electrode formed on, and in ohmic contact with, the barrier layer; a control gate and one or more field plate electrode(s) formed on, and in contact with, the barrier layer between the first and second current conducting electrodes; and an electric circuit formed for electrically connecting each field plate electrode to an electric reference potential and comprising at least a rectifying contact and/or an electric resistor, wherein the rectifying contact is formed outside the channel area of the high electron mobility transistor and is distinguished from the rectifying contact formed by the corresponding field plate electrode.