Abstract:
A molding apparatus for producing a biological tissue embedded in a block of an embedding material. The molding apparatus comprising a mold comprising a compartment configured for containing the embedding material. The compartment having a compartment floor and at least one wall extending upwards from said compartment floor. The compartment comprises at least one depression extending downwards from the compartment floor. The molding apparatus further comprising a sample sheet configured to attach to the biological tissue and hold the biological tissue thereon. The sample sheet being further dimensioned to be positioned in the compartment and to be constrained to the position thereof, at least along one direction, by the compartment. The depression is configured for accepting the biological tissue at least partially therein. Thereby the molding apparatus being configured for producing a block of an embedding material having at least one protrusion associated with the at least one depression wherein the biological tissue, attached to the sample sheet, is embedded at least partially in the protrusion.
Abstract:
A tissue handling device is disclosed. A tissue collecting device is disclosed. A cassette for handling biological tissues is disclosed. A tissue dyeing device is disclosed. A method for handling biological tissues is disclosed. A method for dyeing biological tissues is disclosed.
Abstract:
A molding apparatus for producing a biological tissue embedded in a block of an embedding material. The molding apparatus comprising a mold comprising a compartment configured for containing the embedding material. The compartment having a compartment floor and at least one wall extending upwards from said compartment floor. The compartment comprises at least one depression extending downwards from the compartment floor. The molding apparatus further comprising a sample sheet configured to attach to the biological tissue and hold the biological tissue thereon. The sample sheet being further dimensioned to be positioned in the compartment and to be constrained to the position thereof, at least along one direction, by the compartment. The depression is configured for accepting the biological tissue at least partially therein. Thereby the molding apparatus being configured for producing a block of an embedding material having at least one protrusion associated with the at least one depression wherein the biological tissue, attached to the sample sheet, is embedded at least partially in the protrusion.
Abstract:
A mold for producing a biological tissue embedded in a block of an embedding material is provided. The mold comprises a compartment having a compartment floor and a depression extending downwards from the compartment floor. A molding apparatus, comprising a mold and a press for pressing a sample sheet onto the compartment floor of the mold is provided. The press comprises a foot configured to enter at least partially into the compartment and press a sample tissue, at least partially into the depression. A method of embedding a biological tissue in an embedding material using a mold as described herein is provided. A cleaning device configured for removing excess embedding materials from the press of the molding apparatus is provided.
Abstract:
Systems and methods for locating lesions in a prostate or other organ during a first intervention session, and for using that lesion location information during a second intervention session are presented. A module for detecting and reporting the position of a prostate in real time is disclosed. The module comprises a sensor which detects and electronic signal. An image registration system for mapping first-session 3D model information to a second-session 3D model is also presented, as is a prostate modeling facilitation tool which comprises a set of predefined 3D models of the prostate.
Abstract:
A system further comprises a processing unit functionally associated with the display, wherein the processing unit comprises an image processing module. The system further comprises a camera functionally associated with the processing unit via a communication channel for transferring images from the camera to the processing unit and configured to obtain images of a biopsy sample obtained from the body of the patient. The processing unit is configured to receive image data from an imaging modality capable of obtaining images of internal patient's body parts not directly visible from outside the body, and to display to a user on a display images related to the image data. The processing unit is further configured to generate, from at least one image of a biopsy sample and using the image processing module, a processed image related to the biopsy sample, and to display the processed image on the display.
Abstract:
A containing catheter for facilitating sequential treatment operations therethrough, is provided. The containing catheter comprises a median portion comprising an elongated, substantially tubular member, and a distal portion, comprising a distal stiff member. A catheterization apparatus is provided, comprising the containing catheter and an elongated inner catheter insertable into the containing catheter. A method of catheterization is provided, comprising providing the containing catheter, stiffening a portion of the containing catheter and inserting the stiffened containing catheter into a body conduit of a patient.
Abstract:
A tissue handling device is disclosed. A tissue collecting device is disclosed. A cassette for handling biological tissues is disclosed. A tissue dyeing device is disclosed. A method for handling biological tissues is disclosed. A method for dyeing biological tissues is disclosed.
Abstract:
Presented are methods and apparatus for delivering a surgical instrument to a treatment site within the body of a subject, enabling accurate placement of surgical tools in areas not directly visible to a surgeon during a surgical procedure, while reducing or eliminating need for real-time imaging modalities to guide placement of those surgical tools. A treatment tool is guided to a treatment site by placing a guiding element at a reference site within a body of a subject, the reference site having a known spatial relationship to the treatment site, and utilizing a positioning tool to guide a treatment tool to a locus so positioned with respect to that guiding element that the spatial relationship between that guiding element and that locus is substantially similar to the spatial relationship known to exist between the reference site and the treatment site, thereby positioning the treatment tool substantially at the treatment site. Methods and apparatus for treatment of Benign Prostate Hyperplasia are also presented.
Abstract:
A tissue handling device is disclosed. A tissue collecting device is disclosed. A cassette for handling biological tissues is disclosed. A tissue dyeing device is disclosed. A method for handling biological tissues is disclosed. A method for dyeing biological tissues is disclosed.