Abstract:
The disclosed articles, apparatus, methods, and compositions provide for the integration of different and environmentally-friendly processes for extraction, stabilization, and formulation of active compounds with health and/or other benefits from lignocellulosic by-products of food processes. The active compounds can include one or more of polyphenols, flavonoids, o-diphenols, anthocyanins, and phenolic acids. A high-pressure, high-temperature extraction process provides a means to recover a substantial portion of the active compounds from a biomass feedstock. The corresponding extract can be encapsulated, which provides a convenient form for stabilization and delivery of the active compounds into a final product, for example an active packaging material or corresponding actively packaged food item.
Abstract:
A method of extracting an essential oil from plant matter, starting with providing plant matter to an interior of an extraction vessel, wherein the plant matter includes at least one essential oil. Next, at least one vacuum pump is used to reduce the pressure within the interior of the extraction vessel with the plant matter therein to an absolute pressure of less than 400 mm Hg absolute pressure. Microwave energy is applied to the plant matter while the interior of the extraction vessel is under the reduced pressure, thereby forming a vapor including at least a portion of the essential oil. The vapor is directed from the extraction vessel to at least one condenser vessel. Finally, the vapor is condensed to a liquid state such that the vapor includes at least a portion of the essential oil, by utilizing the at least one condenser vessel.
Abstract:
The present disclosure provides an ultrasonic-microwave synergistic extraction method of total saponins in beautiful millettia root, comprising the following steps: S1, material treatment, S2, cold soaking, S3 enzymatic hydrolysis, S4 extract extraction, and S5 ultrasonic-microwave synergistic extraction. The extraction method of the present disclosure extracts relatively high content of total saponins, and has relatively high yield of saponins and low content of impurities, and each step acts synergistically to solve the problems of relatively low total saponin content, more impumayrities and bubbling in the extraction process.
Abstract:
The invention relates to a method for extracting molecules of interest from a plant matrix, the method including the following steps: electrically processing the plant matrix by means of pulsed power; diffusing the molecules of interest from the processed plant matrix in a hydroalcoholic solvent and/or a solvent including ethyl acetate; and recovering the molecules of interest that were diffused.
Abstract:
An enhanced flash chamber with a flash chamber; a microwave source in communication with the flash chamber for providing a quantity of energy to a plurality of antennas within the flash chamber; a fluid chamber positionable within the flash chamber capable of holding a liquid and the plurality of antennas; and transport tubing for transporting a target material for extraction through the fluid chamber where the quantity of energy from the microwave source interacts with the plurality of antennas to heat the liquid held in the fluid chamber to a superheated state and the superheated state of the liquid transfers a portion of the quantity of energy to the target material to extract an extraction product from the target material.
Abstract:
An apparatus for extraction of constituents from alternative medicinal material is provided. The apparatus includes a outer container adapted to receive solvent liquid, a inner container mounted within the outer container adapted to receive the alternative medicinal material, a microwave generator for supplying microwaves to the solvent liquid and the alternative medicinal material, and a motor for rotating the inner container within the outer container. The inner container includes a perforated wall, such that the alternative medicinal material in the inner container can be fully or partially immersed in the solvent liquid.
Abstract:
The disclosed articles, apparatus, methods, and compositions provide for the integration of different and environmentally-friendly processes for extraction, stabilization, and formulation of active compounds with health and/or other benefits from lignocellulosic by-products of food processes. The active compounds can include one or more of polyphenols, flavonoids, o-diphenols, anthocyanins, and phenolic acids. A high-pressure, high-temperature extraction process provides a means to recover a substantial portion of the active compounds from a biomass feedstock. The corresponding extract can be encapsulated, which provides a convenient form for stabilization and delivery of the active compounds into a final product, for example an active packaging material or corresponding actively packaged food item.
Abstract:
Described herein are essential oils, extracts, apparatus and methods for the extraction of the essential oils and extracts from plant biomass using microwaves.
Abstract:
Provided are a method of preparing a cannabis processed product having an increased Δ9-THC content in an efficient and economic manner, through a cyclization reaction by microwave irradiation of cannabis using various extraction solvents, and use of the processed product having an increased Δ9-THC content prepared by the method, a fraction thereof, and a single ingredient of THC, in foods, drugs, and cosmetics.
Abstract:
A method is for the extraction of a phytochemical, e.g., peptide or protein, or a chemical element from a macroalgae, by applying pulsed electric field (PEF)- or continuous electric field (CEF)-treatment to the macroalgae in a solvent, under pressure higher than the ambient pressure. A device and system carry out this method.