Abstract:
The disclosed invention relates to a process for conducting a Fischer-Tropsch reaction, comprising flowing a reactant mixture comprising fresh synthesis gas and tail gas in a microchannel reactor in contact with a catalyst to form at least one hydrocarbon product, the catalyst being derived from a catalyst precursor comprising cobalt and a surface modified catalyst support.
Abstract:
A micro component steam reformer system for producing hydrogen-enriched gas to power a fuel cell adapted for scalable power requirements wherein fluid flow is configured in a circuit whereby, in serially interconnected fluid flow modules, a vaporized hydrocarbon is mixed with fuel cell off gas having a hydrogen component and combusted to heat vaporizers and a steam reformer, vaporized hydrocarbons and water vapor are introduced as a feed stock into the steam reformer to produce a syn-gas, which is cooled and purified, and the resulting principally hydrogen gas is introduced into a hydrogen fuel cell having an interconnection within the circuit in which off gas from the fuel cell is processed to provide hydrogen and water for use in the system cycle.
Abstract:
Novel manifolds and methods of flow through manifolds are described. Apparatus and techniques are described in which flow from a relatively large volume header is equally distributed to process channels. Methods of making laminated, microchannel devices are also described.
Abstract:
A micro component steam reformer system for producing hydrogen-enriched gas to power a fuel cell adapted for scalable power requirements wherein fluid flow is configured in a circuit whereby, in serially interconnected fluid flow modules, a vaporized hydrocarbon is mixed with fuel cell off gas having a hydrogen component and combusted to heat vaporizers and a steam reformer, vaporized hydrocarbons and water vapor are introduced as a feed stock into the steam reformer to produce a syn-gas, which is cooled and purified, and the resulting principally hydrogen gas is introduced into a hydrogen fuel cell having an interconnection within the circuit in which off gas from the fuel cell is processed to provide hydrogen and water for use in the system cycle.
Abstract:
Novel manifolds and methods of flow through manifolds are described. Apparatus and techniques are described in which flow from a relatively large volume header is equally distributed to process channels. Methods of making laminated, microchannel devices are also described.
Abstract:
The disclosed invention relates to a process for conducting a Fischer-Tropsch reaction, comprising flowing a reactant mixture comprising fresh synthesis gas and tail gas in a microchannel reactor in contact with a catalyst to form at least one hydrocarbon product, the catalyst being derived from a catalyst precursor comprising cobalt and a surface modified catalyst support.
Abstract:
Novel manifolds and methods of flow through manifolds are described. Apparatus and techniques are described in which flow from a relatively large volume header is equally distributed to process channels. Methods of making laminated, microchannel devices are also described.
Abstract:
A micro component steam reformer system for producing hydrogen-enriched gas to power a fuel cell adapted for scalable power requirements. The steam reformer system uses a cycle in which, in laminar flow modules, a vaporized hydrocarbon is mixed with fuel cell off gas having a hydrogen component and combusted to heat vaporizers and a steam reformer. Vaporized hydrocarbons and water vapor are introduced as a feed stock into the steam reformer to produce a syn-gas, which is cooled and purified. The resulting principally hydrogen gas may be introduced into a hydrogen fuel cell. Off gas from the fuel cell is recycled to provide hydrogen and water for use in the system cycle.
Abstract:
The present invention provides electromagnetic energy driven separation methods, including methods for separating molecules in a mixture, for increasing diffusion rate of a substance in a medium, and for moving fluids on a substrate. Such methods work with extremely small volumes of target and may be used for medical diagnosis and treatment.
Abstract:
A method and apparatus for making sealed or closed microchannel structures in semiconductor wafers is disclosed. Two substrates, preferably a transparent cover substrate and an opaque base substrate, are used. The transparent cover substrate is placed over the opaque base substrate. By using the characteristics of the transparent material, electromagnetic waves are directed through the transparent cover substrate to the opaque base substrate. The laser beam heats the base substrate to its phase change temperature, melting the surface of the base substrate that is in contact with a surface of the cover substrate, coalescing the surfaces together and forming a sealed microchannel structure.