Abstract:
Provided are methods of producing carbonyl compounds (e.g., carbonyl containing compounds) and catalysts for producing carbonyl compounds. Also provided are methods of making polymers from carbonyl compounds and polymers formed from carbonyl compounds. A method may produce carbonyl compounds, such as, for example α,α-disubstituted carbonyl compounds (e.g., α,α-disubstituted β-lactones). The polymers may be produced from α,α-disubstituted β-lactones, which may be produced by a method described herein.
Abstract:
The invention provides simple small molecule, non-heme iron catalyst systems with broad substrate scope that can predictably enhance or overturn a Substrate Control Catalyst Control substrate's inherent reactivity preference for sp3-hybridized C—H bond oxidation. The invention also provides methods for selective aliphatic C—H bond oxidation. Furthermore, a structure-based catalyst reactivity model is disclosed that quantitatively correlates the innate physical properties of the substrate to the site-selectivities observed as a function of the catalyst. The catalyst systems can be used in combination with oxidants such as hydrogen peroxide to effect highly selective oxidations of unactivated sp3 C—H bonds over a broad range of substrates.
Abstract:
The present invention discloses a transition metal compound having a novel structure and including a heteroatom, a catalyst composition including the same, and a method for preparing polymers using the same. The transition metal compound according to an embodiment of the present invention has good copolymerization properties, and a polymer having a low density may be prepared using thereof. Thus, a copolymer having various uses may be prepared.
Abstract:
The present invention provides a method for making a harmful arsenic compound, antimony compound and selenium compound harmless by using an organic cobalt complex, in which the cost of the method can be improved. The present invention is a method for making a harmful compound harmless, including irradiating light to an organic cobalt complex containing cobalt as a central metal and a corrin ring as a ligand, a methyl group donor, a titanium oxide photocatalyst, and a harmful compound containing an arsenic atom, an antimony atom or a selenium atom to methylate the harmful compound. In the present invention, it is preferable that the harmful compound be trimethylated.
Abstract:
There are disclosed a process for producing a coupling compound of formula (1): (Y—)(n−1)R1—R2—(R1)(n′−1), (1) wherein R1 and R2 independently represent a substituted or unsubstituted aryl group, which process is characterized by reacting an unsaturated organic compound of formula (2): n′(R1X1n) (2) wherein n, n′, and R1 are the same as defined above, and X1 is the same or different and independently represents a leaving group and bonded with a sp2 carbon atom of R1 group, with a boron compound of formula (3): m{R2(BX22)n′} (3) wherein R2 and n′ are the same as defined above, X2 represents a hydroxy group, an alkoxy group, in the presence of a catalyst containing (A) a nickel compound, and (B) a nitrogen-containing cyclic compound, and the catalyst.
Abstract:
The invention provides a novel bleaching composition comprising:(a) an oxidatively stable bleach activator having the structure ##STR1## wherein Y.sub.1, Y.sub.3 and Y.sub.4 each represents a bridging group, i.e., zero, one, two or three carbon containing nodes for substitution while Y.sub.2 is a bridging group of at least one carbon containing node for substitution, each said node containing a C(R), C(R.sub.1)(R.sub.2), or a C(R).sub.2 unit and each R substituent is the same or different from the remaining R substituent and is selected from the group consisting of H, alkyl, cycloalkyl, cycloalkenyl, alkenyl, aryl, alkynyl, alkylaryl, halogen, alkoxy, or phenoxy, CH.sub.2 CF.sub.3, CF.sub.1 and combinations thereof, or form a substituted or unsubstituted benzene ring of which two carbon atoms in the ring form notes in the Y unit, or together with a paired R substituent bound to the same carbon atom form a cycloalkyl or cyloalkenyl ring, which may include an atom other than carbon, e.g., cyclopentyl or cyclohexyl; M is a transition metal with oxidation states of I, II, III, IV, V or VI, or selected IV from Groups VIA, VIIA, VIII, and IB; Q is any counterion which would balance the charge of the compound on a stoichiometric basis; L is any labile ligand; and,(b) an effective amount of a source of peroxy compound.
Abstract:
The present invention relates to a novel linear a-olefin catalyst composition, and preparation and use thereof. The catalyst composition includes a main catalyst and a co-catalyst, wherein the main catalyst is an imino-based iron coordination compound, and the co-catalyst is a mixture of methylaluminoxane, triisobutylaluminum, and borane or GaCl3. The catalyst composition can be used to catalyze ethylene oligomerization to produce linear α-olefins having a selectivity of greater than 96%, carbon distribution between C4-C28 with the component of C6-C20 being greater than 75%. The catalyst of the invention is stable in structure and can be used for ethylene oligomerization with high catalytic efficiency. The method of the invention has the advantages of relatively convenient in operation, readily available of raw materials, high yield, low costs, less pollution and easy for industrial production.
Abstract:
In one aspect, the present disclosure encompasses polymerization systems for the copolymerization of CO2 and epoxides comprising 1) a catalyst including a metal coordination compound having a permanent ligand set and at least one ligand that is a polymerization initiator, and 2) a chain transfer agent having one or more sites capable of initiating copolymerization of epoxides and CO2, wherein the chain transfer agent contains one or more masked hydroxyl groups. In a second aspect, the present disclosure encompasses methods for the synthesis of polycarbonate polyols using the inventive polymerization systems. In a third aspect, the present disclosure encompasses polycarbonate polyol compositions characterized in that the polymer chains have a high percentage of —OH end groups, a high percentage of carbonate linkages, and substantially all polycarbonate chains having hydroxyl end groups have no embedded chain transfer agent.
Abstract:
In one aspect, the present disclosure encompasses polymerization systems for the copolymerization of CO2 and epoxides comprising 1) a catalyst including a metal coordination compound having a permanent ligand set and at least one ligand that is a polymerization initiator, and 2) a chain transfer agent having one or more sites capable of initiating copolymerization of epoxides and CO2, wherein the chain transfer agent contains one or more masked hydroxyl groups. In a second aspect, the present disclosure encompasses methods for the synthesis of polycarbonate polyols using the inventive polymerization systems. In a third aspect, the present disclosure encompasses polycarbonate polyol compositions characterized in that the polymer chains have a high percentage of —OH end groups, a high percentage of carbonate linkages, and substantially all polycarbonate chains having hydroxyl end groups have no embedded chain transfer agent.